

Residential Development, Fortfield Road, Terenure

Outline Construction Management Plan 222102-PUNCH-XX-XX-RP-C-0006

March 2025

Document Control

Document Number: 222102-PUNCH-XX-XX-RP-C-0006

Status	Rev	Description	Date	Prepared	Checked	Approved
A0	C01	Stage 2 LRD Submission	07/03/2024	JP. Murray	MC. Daly	P. Casey
A0	C02	Stage 3 LRD Submission	01/11/2024	P. Casey	P. Casey	P. Casey
A0	C03	Appeal	13/05/2025	P. Casey	P. Casey	P. Casey

Table of Contents

Docum	Document Controli					
Table o	Table of Contentsii					
Forewo	ord	1				
1	Introduction2					
2	Descri	ption of the Works2				
3	Indicat	tive Construction Programme2				
4	Site Se	et-Up and Security2				
5	Site Ac	ccess				
6	Materi	al Storage and Delivery3				
7	Traffic	Management Plan				
8	Potent	ial Interface with Other Projects5				
9	Genera	al Construction Approach5				
9.1	Cons	struction Working Space5				
9.2	Outl	ine Phasing Strategy5				
9.3	Outl	ine Works Description6				
9.	3.1	Hoarding, Site Set-up and Formation of Site Access/Egress				
9.	3.2	Site Clearance and Demolition6				
9.	3.3	Construction Sequence of Development6				
10	Waste	Management Plan				
11	Comm	unications and Local Stakeholder Management8				
12	Aboric	ultural Impact and Tree Protection Strategy8				
13	Constr	uction Noise, Dust and Vibration9				
14	Working Hours9					
15	Lightir	ng 10				
16	Constr	uction Employment				
Append	dix A	Outline Construction Sequence				
Append	dix B	Waste Characterisation ReportB-I				

Foreword

This 'Outline Construction Management Plan' has been updated to reflect an expanded basement to accommodate a potential increase in car parking provision.

This has been provided as part of the First Party Appeal response, which includes proposals for an expanded basement to address the DCC Reason for Refusal, should An Bord Pleanála consider it appropriate to condition as part of a decision to grant.

We contend that DCC could have conditioned an additional number of car parking spaces to meet their opinion of adequate car parking quantum for the development. This would not constitute "major alterations" as localised extensions of the basement would address this issue. These basement extensions would still be contained within the proposed apartment block footprints and would not compromise the Outline Construction Management Plan included in the original planning submission.

The updates contained within this report consist of a localised expansion of the basement to the west (under Block A) and another localised expansion of the basement to the north (between Blocks B and C). These localised extensions have no substantial impact on the 'Outline Construction Management Plan' and have only resulted in a small number of updates outlined below.

The updates are summarised exhaustively as follows:

- 1. Section 9.3.3 has been updated to reflect increased bulk excavation volumes associated with locally expanded basement extents.
- 2. Appendix A updated to reflect locally expanded basement extents.

These updates do not contravene the 'Outline Construction Management Plan' proposals.

1 Introduction

The purpose of this document is to briefly outline the general activities required for the construction of the proposed Fortfield Road development on a site located at Fortfield Road, Terenure, Dublin 6W.

A Main Contractor has not yet been appointed to carry out the proposed works. Once appointed, it will be the responsibility of the Main Contractor to prepare and submit a detailed construction management plan for the Client's submission to the local authority for approval. The construction management plan will be a live document that will be updated throughout the project lifecycle by the Main Contractor as required.

Regardless of the form of contract, the Contractor will be contractually bound by any conditions arising from the site constraints identified and specified, all Statutory Regulations governing the works, and any additional measures or modifications that may be imposed on the proposed development by the Local Authority or An Bord Pleanála.

2 Description of the Works

The development will comprise a Large-Scale Residential Development (LRD) on a site at Fortfield Road, Terenure of 284 no. units delivering 19 no. houses and 265 no. apartments made up of studios; 1 beds; 2 beds; 3 beds; and 4 beds. The development will also provide community, cultural and arts space and a creche. Communal internal space for residents will also be delivered. Provision of car, cycle and motorbike parking will be provided throughout the development, including at basement and surface level. Vehicular/pedestrian/cyclist access from Fortfield Road. Proposed upgrade works to the surrounding road network is also included. All associated site development works, open space, services provision, ESB substations, plant areas, waste management areas, landscaping (both public and communal) and boundary treatments.

The proposed works are outlined in a series of architectural drawings prepared by Urban Agency Architects and engineering drawings prepared by PUNCH and supplied as part of the planning documentation.

3 Indicative Construction Programme

It is estimated that the construction programme for the works associated with the proposed works will last 30-36 months from the date of commencement. This estimation is based on the typical construction programmes for other similar developments that are currently underway. It is envisaged that construction of the proposed building and external works will be carried out over a single phase. The Main Contractor will be required to prepare a detailed construction programme as part of their tender proposal.

4 Site Set-Up and Security

The Main Contractor will be required to submit a site layout plan that will detail the proposed location of the site compound. The Contractor will ensure that the site compound will be serviced as required and will be secured with appropriate fencing/hoarding. The site compound will be used as the primary location for the storage of materials, plant and equipment, site offices and worker welfare facilities. As Project Supervisor Construction Stage (PSCS), the Contractor will be responsible for site security and they are to ensure that the site and site compound are adequately secured at all times.

As with the other construction activities that are being carried out within the Dublin City Council local authority area, activities associated with the construction compounds will be subject to restrictions to

the nature and timing of operations so that they do not cause undue disturbance to neighbouring areas and communities.

The site layout plan will also include the site perimeter and the proposed detail with regards the hoarding and gate system.

5 Site Access

A new access route is proposed from Fortfield Road to the west of the site. The proposed scheme will integrate the site into the surrounding footpath networks providing construction and operational vehicle access and convenient pedestrians/cyclist routes linking the site with the surrounding area.

Construction related traffic will enter the site via Fortfield Road. Construction traffic associated with the development can proceed along the Fortfield Road to the Templeogue Road (R137) to the M50 or other route depending on destination. Refer to Section 7 and Figure 7-1 below for illustration.

Furthermore, in order to reduce the requirement for site parking for employees, public transport such as Dublin Bus should be utilised.

6 Material Storage and Delivery

The Contractor will ensure that the delivery of materials is coordinated to minimise impacts to adjacent properties. The Contractor will ensure that all materials are adequately stored and secured in their site compound.

For more details please refer to the 'Outline Resource & Waste Management Plan' prepared and included in the planning submission.

The Contractor will ensure the roads adjacent to the site are kept clean and free of debris.

7 Traffic Management Plan

The Contractor will be required to prepare and submit a detailed traffic management plan as part of their tender submission. Once appointed, the preferred Contractor will further develop the traffic management plan as required for the developer to submit to the local authority for approval in advance of works commencing onsite. The Contractor will ensure that advanced warning signs are erected on approaches to the site as required by the PSCS. The Contractor will use a competent sign provider and all signage that meets the requirements of the Safety, Health & Welfare at Work (General Applications) Regulations 2007 and Chapter 8 Traffic Signs Manual. Any proposed temporary road markings must also confirm to the requirements of Chapter 8 of the Traffic Signs Manual.

Residential Development, Fortfield Road, Terenure

Outline Construction Management Plan

Figure 7-1: Proposed Primary Route To/From Site © Google Maps.

The Main Contractor will be responsible for all site access and works activity and must ensure the continued operation of the surrounding local road network as a result of its construction traffic.

The management of construction traffic on the public and private road networks in and around the proposed development is a critical part of the overall project and must be actively managed by the Contractor.

The Contractor must submit a Construction Traffic Management Plan to the Local Authority for approval. Haulage vehicle movements should be fully coordinated to comply with the requirements of the agreed plan:

- Construction vehicles must not stop or park along the routes at any time;
- Haulage vehicles must not travel in convoys greater than two vehicles at any time;
- Site entrance to remain free of parked or stationary vehicles at all times;
- All loading of demolition material will occur within the site boundary;
- All off-loading of deliveries will take place within the site, remote from the public road and will access via the agreed construction access point.

The site is located in an established suburban area where the road and junction space is shared with public road users and construction traffic associated with other nearby developments. Therefore, the flow of construction traffic will need to be marshalled and controlled to ensure that potential conflicts are avoided as much as possible.

There are no proposals to introduce temporary road closures or temporary traffic light signals to facilitate construction of the proposed development. There are also no proposals to amend the existing local access arrangements to the surrounding areas.

For more details please refer to the 'Outline Resource & Waste Management Plan' prepared and included in the planning submission.

8 Potential Interface with Other Projects

Depending on development activity in the local environs, the proposed works may have an interface with other projects within the locality. The appointed Contractor will need to coordinate with other Contractors as required to ensure a smooth interface between projects (if/as applicable).

There may be a number of PSCS's operating in the urban locality at any one time on individual sites. It will be responsibility of the appointed Contractor as PSCS to ensure that delivery and haul routes, site access and egress points and potential crossing points associated with the site are fully coordinated and agreed with other Contractors in advance of the works commencing.

9 General Construction Approach

9.1 Construction Working Space

Construction working space will be set out in the detailed construction management plan at compliance stage.

Construction access routes, haul routes and delivery routes to the site are to be agreed with the Engineer/Employer's Representative in advance of works commencing onsite.

Any road closures required will be submitted and approved in advance with the local authority. It is the responsibility of the Main Contractor to prepare and submit the road closure application to the local authority in advance of works commencing onsite.

9.2 Outline Phasing Strategy

It is currently envisaged that the proposed development will be completed in a single phase, as detailed below. For further details relating to the works, please refer to the more detailed planning drawings (architectural, engineering, landscape, etc.).

Phase 1:

- 1. Establish secure site perimeter (fencing/hoarding) and establishment of the construction compound(s).
- 2. Construction of access road and connections from Fortfield Road to the Fortfield Road development entrance.
- 3. Construction of associated services along the access road and Fortfield Road to enable connection to relevant service tie-in locations (to be progressed in tandem with Item 1).
- 4. Topsoil removal and stockpiling as required throughout development lands.
- 5. Site regrading throughout development extents to establish construction levels and introduce berms.
- 6. Construction of the basement car park and associated bulk excavation. Stockpiling of excavated material, testing and re-use as required.
- 7. Completion of internal construction access routes (temporary surfacing) throughout the development interior and completion of associated service routes and ancillary works.
- 8. Establish proposed and future potential access routes to adjoining lands as required, e.g. adjacent school and park lands.
- 9. Installation of drainage/SuDS elements throughout the site.
- 10. Construction of residential units in defined sequence.

- 11. Completion of internal road network to permanent status, including associated private realm SuDS measures.
- 12. Delivery of landscaping and parks/recreation elements throughout the development extents.

9.3 Outline Works Description

The construction works will involve an indicative sequence of works, as described in short below. The Contractor will outline works which impact public spaces within the Construction Management Plan that shall be subject to submission and agreement with Dublin City Council.

9.3.1 Hoarding, Site Set-up and Formation of Site Access/Egress

The site area will be enclosed with hoarding details of which are to be agreed with DCC. Hoarding panels will be maintained and kept clean for the duration of the works. This will involve erecting hoarding around the proposed site perimeter in line with the finished development extents.

The available site footprint will enable the Contractor to set up the site compound within the site boundary.

The Contractor will be responsible for the security of the site. The Contractor will be required to:

- Operate a Site Induction Process for all site staff;
- Ensure all site staff shall have current 'Safe Pass' cards and appropriate PPE;
- Install adequate site hoarding to the site boundary;
- Maintain site security at all times;
- Install access security in the form of turn-styles and gates for staff;
- Separate public pedestrian access from construction vehicular traffic;

9.3.2 Site Clearance and Demolition

The location is a greenfield site and will require minimal site clearance beyond topsoil removal and some tree removal.

It is noted that the proposed development consists of the excavation and construction of a single level basement parking level, the subsequent construction of multiple storeys of residential apartments and the associated site landscaping and ancillary development.

9.3.3 Construction Sequence of Development

The construction of Blocks A-C will follow completion of the excavation/grading works and associated establishment of the basement formation levels. The subsequent superstructure will consist of construction of RC framed structures on ground floor transfer structure (where applicable and coincident with the basement footprint) and on ground bearing substructure elsewhere.

The construction of Block D will consist of construction of RC framed structures on ground bearing substructure.

The construction methodology and programme of these activities will be dictated by the Contractor.

Site Grading

The proposed basement will involve the excavation of approximately 16,250m³ of material. Site investigations and a geotechnical desktop review of the site shows that the predominant soils in the area consist of low permeability soils overlying limestone and shale bedrock. Based on site investigation results and a review of the external GSI geotechnical boreholes in the immediate vicinity of the development site, rock is typically <u>not</u> encountered at depths down to 5 or 10m bgl. The basement formation level is at approx. 44.80mOD (relative to existing ground levels of 47.50mOD, so excavation into the underlying rock is not anticipated during excavation.

Residential Development, Fortfield Road, Terenure Outline Construction Management Plan

The Contractor must prepare a Construction and Demolition Waste Management Plan in accordance with the best practice guidelines for the preparation of resource & waste management plans for construction & demolition projects (EPA 2021) and ensure that all material is disposed of at an appropriately licensed land fill site. As outlined in the appended 'Waste Characterisation Assessment' for Fortfield Road and the 'Geotechnical Report' by IGSL included as an appendix to the Engineering Planning Report, all samples tested were classified as non-hazardous. The Contractor must also outline detailed proposals within the Construction Management Plan to accommodate construction traffic.

Basement Level Construction

The construction of the basement level will involve the excavation of the basement footprint and immediate surrounds to enable construction of an RC foundation slab with thickenings coinciding with column locations. The basement level will include a perimeter wall along its sunken extents relative to surrounding finished levels and will consist of RC construction (likely a pre-cast component). The spoil generated from the basement level construction will be recycled and re-used (in accordance with the 'Outline Resource & Waste Management Plan') and, where necessary, disposed at an appropriate licensed land fill site. The concrete operations associated with the basement structure will require concrete deliveries to site.

The groundwater level is to be confirmed by on-site testing by the SI Contractor. To prevent any potential risk of groundwater intrusion into the lower structure the basement car park will be constructed as a water-tight box, the proposed grade for the basement is Grade 1, as per BS 8102:2009. The proposed structural integrity of the basement perimeter walls and their ability to prevent groundwater intrusion into the site is deemed sufficient to mitigate the potential risk to acceptable limits. The concrete works will involve concrete deliveries to site and adequate wash-down and wheel wash facilities must be provided for the concrete wagons.

Construction Sequence of Superstructure

The construction of the various superstructures will involve complex sequencing of activities and various construction methodologies could be adopted to deliver the Contract. The nature of the buildings throughout the development, the column grids and economic factors, among other issues, would suggest that the buildings will be constructed utilising reinforced concrete frames.

As noted, the construction methodology and therefore the programme of the construction activities will be dictated by the Contractor.

Building Structures - Blocks D:

- Construction of the ground floor foundation slabs and substructure.
- Construction of rising elements to Level 1 and construction of Level 1 floor slab;
- Similar sequence of construction of rising elements and floor slabs

Building Structure - Block A, B and C:

- Construction of the basement level (including substructure elements and permanent basement parking perimeter wall structures;
- Construction of rising elements to Level 0 and construction of Level 0 floor slab and transfer structures;
- Similar sequence of construction of rising elements and floor slabs

Envelope / Cladding - All Blocks:

- Commencement of envelope works to Level 1 when structure has progressed to approximately Level 2/3;
- Advancing of Cladding two levels behind the structure.

Envelope / Cladding - All Blocks:

• The structural blockwork will also act as the envelope for the structure, and cladding will follow completion of the blockwork.

Mechanical & Electrical Fit-Out:

- First fix will commence from ground floor level upwards;
- This will be followed by the second fix and final connections.

Fit-Out:

- Initial installation of stud work when cladding completed and floor is weather tight;
- Installation of equipment and associated connection to services;
- Completion of finishes.

Commissioning:

• The final commissioning period will commence during fit-out.

The above represents a high-level indicative construction sequence only. The actual sequence will be dictated by the Contractor. The Contractor will issue a detailed construction programme outlining the various stages prior to commencement of works.

It is envisaged that multiple tower cranes will be temporarily erected to accommodate the apartment block construction works for the distribution of building materials and plant. The Contractor is required to obtain all necessary licences from DCC.

A high-level illustration of the potential construction sequence is provided in a series of sketches in Appendix A.

10 Waste Management Plan

The Main Contractor will be required to prepare a detailed waste management plan for the project. This will be included in the overall construction management plan that will be submitted to the local authority.

For more details please refer to the 'Outline Resource & Waste Management Plan' prepared and included in the planning submission.

11 Communications and Local Stakeholder Management

The Contractor will, as required, liaise with owners of the local properties in advance of works commencing onsite. The Contractor will use a competent sign provider and all signage used will meet the requirements of the Safety, Health & Welfare at Work (General Applications) Regulations 2007 and Chapter 8 Traffic Signs Manual.

12 Aboricultural Impact and Tree Protection Strategy

The overall objectives are to retain the maximum number of good quality trees whilst also achieving densities of housing compliant with current standards and planning recommendations. Proposed new tree planting is contained within the Landscape Masterplan drawings by Niall Montgomery & Partners,

submitted as part of the planning package. These plantings will provide a new generation of trees which have the potential to develop and add to the existing tree cover on the site.

A Tree Protection Strategy is provided as part of the arboricultural element of the submission with the aim of ensuring retained trees are maintained for the duration of the construction stage of the development free of negative construction related impacts.

A Site Arborist shall be appointed prior to the commencement of site construction works and will be responsible for the setting up and monitoring of tree protection, liaising with local authority tree / planning officers and providing feedback and advice to the design construction teams on issues relevant to trees. The Site Arborist shall be retained for the duration of construction works and should be appointed to carry out a post-construction tree survey/assessment.

For full details please refer to the Arboricultural Assessment, Aboricultural Impact and Tree Protection Strategy Report Plan prepared by The Tree File Ltd. and included in the planning submission.

13 Construction Noise, Dust and Vibration

The Main Contractor will be required to monitor noise, dust and vibration as will be outlined in the planning conditions. The Contractor will establish baselines for noise, dust and vibration in advance of works commencing onsite. It is noted that a baseline noise survey has been undertaken at the development site by AWN Consulting Limited to determine the existing environment at the site. Please refer to the 'Noise & Vibration Impact Assessment for Planning' included in the planning application for details.

As part of their detailed construction management plan, the Contractor will be required to clearly indicate how they plan on monitoring noise, dust and vibration throughout the course of the project. This will be especially critical in relation to the basement construction and associated piling works. The Contractor will also be required to clearly outline the mitigation measures they plan on putting in place to ensure that permissible construction noise, dust and vibration levels for a development of this scale (as directed by Dublin City Council by way of planning condition) are not exceeded.

For more details, please refer to the 'Outline Resource & Waste Management Plan' by PUNCH Consulting Engineers and the 'Noise & Vibration Impact Assessment for Planning' by AWN Consulting Limited prepared and included in this planning submission.

14 Working Hours

The proposed hours of work on site will be 07:00 hrs to 18:00 hrs Monday to Friday and 08:00 hrs to 14:00 hrs Saturday unless otherwise specified by planning conditions. It is anticipated that construction working hours will be stipulated in the planning conditions attached to the planning grant. Any working hours outside the normal construction working hours will be agreed with Dublin City Council. The planning of such works will take consideration of sensitive receptors. Consideration of nearby sensitive receptors are outlined in the 'Noise & Vibration Impact Assessment for Planning' by AWN Consulting Limited (specifically Figure 7) as included in this planning submission.

For more details, please refer to the 'Outline Resource & Waste Management Plan' prepared and included in the planning submission.

15 Lighting

There are no proposals to alter the existing lighting arrangements in the area. It is not envisaged that any existing public lighting will need to be disconnected as a result of the proposed works. Appropriate lighting will be provided as necessary at construction compounds. All lighting will be installed so as to minimise light spillage from the site.

16 Construction Employment

Construction employment numbers will vary depending on the construction stage of the project and the actual approach adopted by the Contractor. However, it is anticipated that at the peak of construction there may be a workforce of approximately 150 people employed (maximum).

Appendix A Outline Construction Sequence

	88					
			BLOCK D FFL 48.00			
	BLC	ск с 48.30				
BLOCK B FFL 48.30				BLOCK D FFL 48.00		
		02028				
	C. Martin	and a second sec				
	By Date Rev DAP 2024-02-09		Amendment		By Date	Client:
						1 Celbridge West Land Limited

			CONSTRUCT GROUND BEARING STRUCTURE FOR BLOCKS A, B, C AND D
			X
By Date Rev DAP 2024-02-09	Amendment	By Date	Client: 1 Celbridge West Land Limited

Appendix B Waste Characterisation Report

Unit 15 Melbourne Business Park Model Farm Road Cork T12 WR89

T: 021 434 5366 E:admin@ocallaghanmoran.com www.ocallaghanmoran.com

Waste Characterisation Assessment

Fortfield Road,

Terenure,

Dublin 6

Prepared For: -

IGSL Limited Unit F M7 Business Park Naas County Kildare

Prepared By: -

O'Callaghan Moran & Associates Unit 15 Melbourne Business Park Model Farm Road Cork

May 2022

Project	Waste Characterisation: Fortfield Road, Terenure, Dublin 6						
Client	IGSL Limited						
Report No	Date	Status	Prepared By	Reviewed By			
220012001	23/05/2022	Final	Austin Hynes PGeo MSc	Sean Moran B.Sc. MSc			

TABLE OF CONTENTS

<u>PAGE</u>

1	INT	RODUCTION	1
	1.1	Methodology	.1
2	WA	STE CLASSIFICATION ASSESSMENT	2
	2.1	Soil Sampling and Laboratory Analysis	.2
	2.2	WASTE CLASSIFICATION	.2
	2.3	WASTE ACCEPTANCE CRITERIA	.5
	2.4	WASTE MANAGEMENT OPTIONS	.7
3	COI	NCLUSIONS AND RECOMMENDATIONS	9
	3.1	CONCLUSIONS	.9
	3.2	RECOMMENDATIONS	.9

APPENDICES

APPENDIX 1	-	Trial Pit and Borehole Logs
APPENDIX 2	-	Laboratory Results
APPENDIX 3	-	Waste Classification Report

1 INTRODUCTION

IGSL Limited requested O'Callaghan Moran & Associates (OCM) to undertake a waste characterisation assessment of samples of made ground collected from four (4 No.) trial pits and five (5 No.) cable percussion boreholes installed at a site at Fortfield Road, Terenure, Dublin 6.

1.1 Methodology

IGSL provided a description of the ground conditions and collected samples of the soils from the borehole and trial pit locations. The samples were analysed at an accredited laboratory and the results formed the basis for a waste classification assessment, which was undertaken by OCM in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015).

2 WASTE CLASSIFICATION ASSESSMENT

2.1 Soil Sampling and Laboratory Analysis

2.1.1 Site Investigation

The site investigation was completed by IGSL Limited in April 2022 and included the collection of nine composite samples from four (4 No.) trial pits and five (5 No.) cable percussion boreholes. The locations are shown on Figure 2.1. The trial pit and borehole logs are in Appendix 1.

The logs indicate the subsurface is composed of Natural Ground. There is topsoil at the surface of all locations. The subsurface is composed of soft to firm sandy slightly gravelly SILT/CLAY to circa 1.00 mbgl. This is underlain by firm to stiff, sandy gravelly CLAY/SILT to between 3.40-3.80 mbgl. The subsurface is composed of stiff to very stiff, sandy gravelly CLAY below 3.80 mbgl.

2.1.2 Sample Collection

IGSL collected the samples and placed them in laboratory prepared containers that were stored in coolers prior to shipment to Chemtest Ltd.

2.1.3 Laboratory Analysis

The samples were tested for, metals (arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc, total organic carbon (TOC), BTEX (benzene, toluene, ethylbenzene and xylene) aliphatic and aromatic hydrocarbons, polychlorinated biphenyls (PCB), mineral oil, polyaromatic hydrocarbons (PAH) and asbestos. Leachate generated from the samples was tested for arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc, chloride, fluoride, soluble sulphate, phenols, dissolved organic carbon (DOC), total dissolved solids (TDS).

This parameter range facilitates an assessment of the hazardous properties of the waste, and also allows a determination of appropriate off-site management options based on the Waste Acceptance Criteria (WAC) applied by landfill operators.

The analytical methods were all ISO/CEN approved and the method detection limits were below the relevant guidance/threshold values. The full laboratory report is in Appendix 2.

2.2 Waste Classification

The Haz Waste Online Classification Engine, developed in the UK by One Touch Data Ltd, was used to determine the waste classification. This tool was developed specifically to establish

whether waste is non-hazardous or hazardous and has been approved for use in Ireland by the Environmental Protection Agency. The full Waste Classification Report is in Appendix 3 and the results are summarised in Table 2.1.

Sample No.	Depth	Classification	LoW Code
BH01	1.0	Non-Hazardous	17 05 04
BH03	1.0	Non-Hazardous	17 05 04
BH04	2.0	Non-Hazardous	17 05 04
BH05	2.0	Non-Hazardous	17 05 04
BH06	1.0	Non-Hazardous	17 05 04
TP01	0.70	Non-Hazardous	17 05 04
TP02	1.0	Non-Hazardous	17 05 04
TP03	0.80	Non-Hazardous	17 05 04
TP04	0.50	Non-Hazardous	17 05 04

Table 2.1Waste Classification

Asbestos was not detected in any of the samples tested.

All samples are classified as non-hazardous and the appropriate List of Waste Code is 17 05 04 (Soil and Stone other than those mentioned in 17 05 03*).

2.3 Waste Acceptance Criteria

The results of the WAC testing are presented in Table 2.2, which includes for comparative purposes the WAC for Inert, Non Hazardous and Hazardous Waste Landfills pursuant to Article 16 of the EU Landfill Directive 1999/31/EC Annex II which establishes criteria and procedures for the acceptance of waste at landfills.

All samples meet the inert WAC.

Table 2.2 WAC Results

Parameter	Unit	BH01	вноз	BH04	BH05	BH06	TP01	TP02	TP03	TP04	Inert Landfill	Inert Landfill Increased Limits	Non- Hazardous Landfill	Hazardous Landfill
Depth	m	1.0	1.0	2.0	2.0	1.0	0.70	1.0	0.80	0.50				
Antimony	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.18	0.7	5
Arsenic	mg/kg	< 0.0002	0.0064	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0064	0.5	1.5	2	25
Barium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	20	20	100	300
Cadmium	mg/kg	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	0.04	1	5
Chromium	mg/kg	0.0065	0.0078	0.0052	0.013	0.0069	0.0053	0.0057	0.0056	0.0087	0.5	0.5	10	70
Copper	mg/kg	0.010	0.021	0.0073	0.0095	0.011	0.012	0.0082	0.011	0.017	2	2	50	100
Lead	mg/kg	< 0.0005	0.0055	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0050	0.5	0.5	10	50
Molybdenum	mg/kg	0.080	0.031	0.10	0.079	0.077	0.023	0.052	0.064	0.026	0.5	1.5	10	30
Nickel	mg/kg	0.0052	0.0089	< 0.0005	< 0.0005	< 0.0005	0.0054	< 0.0005	< 0.0005	0.0085	0.4	0.4	10	40
Selenium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.3	0.5	7
Zinc	mg/kg	< 0.003	< 0.003	< 0.003	0.036	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	4	4	50	200
Mercury	mg/kg	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.01	0.2	2
Phenol	mg/kg	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	1	1	NE	NE
Fluoride	mg/kg	3.7	3.6	2.5	2.4	4.1	5.8	3.5	3.6	4.7	10	10	150	500
Chloride	mg/kg	< 10	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	800	2,400	15,000	25,000
Sulphate	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	1000*	3,000	20000*	50,000
DOC **	mg/kg	60	< 50	< 50	99	65	< 50	< 50	60	52	500	500	800	1,000
рН	pH units	9.1	8.8	8.9	8.8	8.6	8.6	9.0	8.8	8.8	NE	NE	NE	NE
TDS ***	mg/kg	710	580	580	580	580	710	580	650	780	4,000	12,000	60,000	100,000
тос	%	0.46	0.93	0.47	0.33	0.42	0.85	0.44	0.54	0.74	3	6	NE	6
Benzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Toluene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Ethylbenzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
m/p-Xylene	mg/kg	0.0032	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
o-Xylene	mg/kg	0.0021	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
PCB Total of 7	mg/kg	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	1	1	NE	NE
Total 17 PAH's	mg/kg	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	NE	100	NE	NE
Mineral Oil	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	500	500	NE	NE
Asbestos	% mass	NAD	NE	NE	NE	NE								

NAD denotes No Asbestos Detected

* denotes sulphate level exceeding inert waste limit may be considered as complying if the TDS value does not exceed 6,000mg/kg at L/S = 10l/kg.

** denotes a higher limit may be accepted provided the DOC alternative values of 500mg/kg is achieved

*** denotes TDS. The values for TDS can be used to sulphate and chloride.

PAH over 1mg/kg and Mineral Oil over 50 mg/kg exceeds limit at soil recovery site in Ireland

2.4 Waste Management Options

The EPA has issued guidance on acceptance criteria for a range of parameters for soil recovery sites. This includes;

• Metals (solid concentration not leachability) in soil and stone (including As, Cd, Cr, Cu, Hg, Ni, Pb, Zn);

- Total organic carbon in soil and stone;
- Total BTEX (benzene, toluene, ethylbenzene, xylenes) in soil and stone;
- Mineral oil in soil and stone;
- Polycyclic aromatic hydrocarbons (PAHs) in soil and stone;
- Polychlorinated Biphenyls (PCBs) in soil and stone;
- Asbestos fibres in soil and stone.

The guidance requires that soils from brownfield sites should not exceed the limits for the parameters specified in Table 2.3 and 2.4. For metals limits have been specified for a range of soil types nationally separated into six domain areas.

Table 2.5 Soli Recovery Sile Criteria					
Parameter	Limit for Soil Recovery Sites				
Total BTEX	0.05 mg/kg				
Mineral oil	50 mg/kg				
Total PAHs	1 mg/kg				
Total PCBs	0.05 mg/kg				

Table 2.3 Soil Recovery Site Criteria

All samples meet the soil recovery criteria.

The soil and stone cannot be sent to soil recovery sites if the trigger levels for a particular domain are exceeded. There is however some flexibility in applying the limits. A derogation applies where up to three parameters can exceed the limit for a sample provided the concentration in the samples is no more than 1.5 times the trigger level. The site which is subject to this investigation is located in Domain 2 and the trigger levels are listed in Table 2.5.

Table 2.4 Soll Recovery Trigger Levels							
		Domain 2 Trigger Level	1.5 times Trigger Level				
Arsenic	mg/kg	24.90	37.35				
Cadmium	mg/kg	3.28	4.92				
Chromium	mg/kg	50.30	75.45				
Copper	mg/kg	63.50	95.25				
Mercury	mg/kg	0.36	0.54				
Nickel	mg/kg	61.90	92.85				
Lead	mg/kg	86.10	129.15				
Zinc	mg/kg	197.00	295.5				

— · .

All samples meet the soil recovery criteria for metal concentrations.

Waste management options are summarised on Table 2.5. All are subject to approval of the waste management facility operators. Class A material is suitable for removal to a soil recovery facility.

Sample No.	Depth	Classification	LoW Code	Category
BH01	1.0	Non-Hazardous	17 05 04	А
BH03	1.0	Non-Hazardous	17 05 04	А
BH04	2.0	Non-Hazardous	17 05 04	А
BH05	2.0	Non-Hazardous	17 05 04	А
BH06	1.0	Non-Hazardous	17 05 04	А
TP01	0.70	Non-Hazardous	17 05 04	А
TP02	1.0	Non-Hazardous	17 05 04	А
TP03	0.80	Non-Hazardous	17 05 04	А
TP04	0.50	Non-Hazardous	17 05 04	А

A Suitable for Soil Recovery

3 CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

3.1.1 Waste Classification

Asbestos was not detected in any of the samples tested.

All samples are classified as non-hazardous and the appropriate List of Waste Code is 17 05 04 (Soil and Stone other than those mentioned in 17 05 03*).

The recovery/disposal options are discussed in Section 2.4.

3.2 **Recommendations**

OCM recommend that a copy of this report be provided in full to the relevant waste management facilities to which the made ground and subsoils will be consigned to confirm its suitability for acceptance.

Appendix 1

Trial Pit and Borehole Logs

GEOTECHNICAL BORING RECORD

REPORT NUMBER

24013

CO-ORDINATES RIG TYPE									Dando 2000			SHEET		Sheet 1 of 1	
GROUND LEVEL (mOD)						BOREHOLE DIAMETER (mm)200BOREHOLE DEPTH (m)6.10						DATE CO DATE CO	ommen omple ⁻	ICED 14/04/2022 TED 14/04/2022	
CLIENT Lioncor ENGINEER Punch C.E					SPT ENE	SPT HAMMER REF. NO. ENERGY RATIO (%)						BORED BY PROCESSED BY		W.Cahill BY F.C	1
Depth (m)			Des	cription			-egend	Elevation	Depth (m)	Ref. Number	Sample Type	Deptp (m) (m)	Recovery	Field Test Results	Standpipe Details
Firm dark brown sandy SILT/CLAY with occasional fine gravel									0.80				<u> </u>		
Soft to firm light brown sandy SILT/CLAY with some										AA175560	В	1.00		N = 11 (2, 3, 3, 2, 3, 3)	
2						₁ <u> </u>				AA175561	в	2.00		N = 7 (3, 3, 2, 2, 1, 2)	
3	 Medium dense to dense grey fine to carse sandy silty/clayey GRAVEL 4 								3.60	AA175562	В	3.00		N = 16 (4, 4, 3, 4, 5, 4)	
4										AA175563	В	4.00		N = 30 (4, 5, 5, 7, 8, 10)	
5						0 0 0 0 0				AA175564	В	5.00		N = 28 (5, 6, 6, 6, 7, 9)	
6	6 Obstruction End of Borehole at 6.10 m								6.10	-				N = 50/150 mm (7, 8, 17, 33)	
7															
8															
9															
HA	ARD STI	RATA BOI	RING/CHIS	ELLING									v	VATER STRIKE DET	AILS
From (m)		To (m)	Time (h) C	omments			Water Strike		sing pth	Sealed At	Rise To	e T (r	ïme min)	Comments	
4.50 6.00		4.80 6.10	1 1.5											No water strike	
									l				GF	ROUNDWATER PRO	GRESS
INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type						Date	; <u> </u>	Hole Depth	Casing Depth	De W	pth to ater	Comme	ents		
RE	MARKS	1hr Erec location	ting Covid and hand	19 Dafe W dug inspec	/orking Area . tion pit were c	CAT so arried o	canned out .		D - Smal B - Bulk LB - Larg	Die Legen I Disturbed (tub) Disturbed ge Bulk Disturbe	d d		UT - Sam P - U	Undisturbed 100mm Diameter iple Jndisturbed Piston Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

24013

CO-ORDINATES RIG TYP BOREHO GROUND LEVEL (mOD) BOREHO						'PE IOLE DIAME	E Dando 2000 DLE DIAMETER (mm) 200					DATE COMMENCED 13/04/2022					
						REHOLE DEPTH (m) 4.20						DATE COMPLETED 13/04/2022					
CLIENT Lioncor				SPT HA	SPT HAMMER REF. NO.						BY	-	W.Cahill				
ENG	SINEER	Pune	ch C.E		ENERG	SY RATIO (%)			Sam	PROCE	SSED	BÅ	F.C			
Depth (m)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m)	ACOVADV		Field Test Results	Standpipe Details		
0	Soft d	ark browr	sandy SII	T/CLAY									-				
			·					0.80									
Firm to stiff dark brown/grey sandy SILT/CLAY with occasional gravel						\$, , , 			AA175549	В	1.00			N = 10 (2, 2, 3, 2, 3, 2)			
2									AA175550	В	2.00			N = 31 (4, 6, 6, 8, 8, 9)			
3								3.50	AA175551	В	3.00			N = 33 (5, 6, 6, 7, 9, 11)			
4	Stiff to very stiff black sandy gravelly silty CLAY with occasional cobbles and small boulders							4.20	AA175552	В	4.00			N = 50/150 mm (10, 15, 24, 26)			
5	End o	f Borehol	e at 4.20 n	1													
6																	
8																	
9																	
				Water	Ca	sina	Sealed	Rise	e T	ime	WA		AILS				
-ron	2.20 2.60 1		omments		Strike	De	pth	At	То	(r	nin) C		Jomments				
4.	00	4.20	1.5											lo water strike			
								I				G	RO	UNDWATER PRO	GRES		
INS ⁻	INSTALLATION DETAILS Date Tip Depth RZ Top RZ Base Type						· [Hole Depth	Casing Depth	Der W	oth to ater	Comm	nent	S			
REN	MARKS	1hr Erec location	ting Covid and hand	19 Dafe Wo dug inspectio	rking Area . CA on pit were carri	T scanned ed out .		Samp D - Small B - Bulk I LB - Larg Env - Env	Die Legen Disturbed (tub) Disturbed ge Bulk Disturbe vironmental San	d d nple (Jar 4	- Vial + Tub)	UT Sa P - W	- Und mple - Undis - Wate	listurbed 100mm Diameter sturbed Piston Sample er Sample			

REPORT NUMBER

CO-	ORDIN			, roonare, Du	RIG TYP BOREH		rer (m	ım)	Dando 20 200	000	SHEET		Sheet 1 of 1 NCED 13/04/2022	
		LEVEL (m	10D)				(m) NO		4.00				TED 13/04/2022	
ENC	GINEER	Pun	ich C.E		ENERG	Y RATIO (%)	NO.				PROCES	SED E	BY F.C	
)epth (m)			De	scription		egend	levation	Jepth (m)	kef. Jumber	sam be be	ples (u)	ecovery	Field Test Results	tandpipe etails
	Soft d grave	ark brow	n sandy S f dark bro	ILT/CLAY with or	ccasional avelly CLAY	Γ	Ξ	1.60	AA175553	В	1.00	ž	N = 6 (1, 2, 1, 2, 2, 1)	ο C
2	with o	iccasiona	I cobbles	and small boulde	ers S				AA175554 AA175555	В	2.00		N = 7 (2, 2, 1, 2, 2, 2) N = 35 (4, 9, 11, 11, 1, 12)	
4									AA175556	В	4.00		N = 50/150 mm (22, 3, 39, 11)	
5	Obstr	uction						5.90	AA175557	В	5.00		N = 33 (8, 7, 6, 7, 10, 10) N = 52/75 mm (25, 52)	
-7-89	End o	f Boreho	e at 4.00	m										
HA	RD ST		Time	SELLING		Water	Ca	sina	Sealed	Rise	<u>а Ті</u>	v me ⊺		AILS
-ror 3. 5.	3.80 4.00 1 5.70 5.90 1.5						De	pth	At	To	(m	<u>nin</u>)	No water strike	
								Hole	Casing	Dor	oth to	G	ROUNDWATER PRO	GRES
INS	TALLA Date	TION DE	TAILS oth RZ To	p RZ Base	Туре	Date		Depth	Depth	W	ater (Comm	ents	
RE	MARKS	i 1hr Ere location	cting Covi and hand	d 19 Dafe Workii dug inspection	ng Area . CAT pit were carrie	scanned d out .		D - Smal B - Bulk LB - Larg	I Disturbed (tub) Disturbed (tub) Disturbed ge Bulk Disturbed	d d	Vial - Tuk)	UT - San P - I W -	- Undisturbed 100mm Diameter nple Undisturbed Piston Sample	

REPORT NUMBER

co		NATES	rttield Ro	ad, lerenure	e , Dublin 6	ЭЕ		[Dando 20	000			Sheet 1 of 1	
GR	OUND	LEVEL (I	mOD)		BOREH BOREH	OLE DIAMET OLE DEPTH (ER (m m)	m) 2 5	200 5.80		DATE C	OMMEN	CED 14/04/2022 FED 14/04/2022	
CLI	ENT SINEEF	Lic R Pu	ncor nch C.E		SPT HA ENERG	MMER REF. N Y RATIO (%)	10 .			E	BORED	BY SSED B	W.Cahill Y F.C	1
Depth (m)			D	escription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Des Depth (m)	Secovery	Field Test Results	Standpipe Details
- 0	Dark	brown sa	andy SILT	/CLAY			_							
	Soft I	ight brow	/n sandy s	SILT/CLAY w	vith occasional	- <u> </u>		0.50	-					
1	grave Firm occas	to stiff da sional co	ark brown bbles	sandy grave	Ily silty CLAY with			0.90	 AA175565	В	1.00		N = 7 (2, 2, 2, 1, 2, 2)	
2									AA175566	в	2.00		N = 7 (1, 2, 2, 1, 2, 2)	
3									AA175567	в	3.00		N = 20 (3, 4, 4, 5, 5, 6)	
4	Stiff to with s	o very st some cot	iff light bro bles and	own very grav occasional s	velly sandy CLAY mall boulders			4.20	AA175568	В	4.00		N = 49 (8, 10, 10, 11, 13, 15)	
5								5 00	AA175569	В	5.00		N = 50/150 mm (10, 17, 23, 27)	
6	Obstr End c	ruction of Boreho	ble at 5.80) m				5.80					N = 250/75 mm (25, 250)	
7														
8														
- 9														
-														
HA	RD ST	RATA B	ORING/CI	HISELLING		Water		sing (Sealed	Pisc	∖∣т	W	ATER STRIKE DET	AILS
Fror 4.	n (m) 40	To (m)	(h) 1	Comments		Strike	De	pth	At	To	, , , , , , , , , , , , , , , , , , ,	min)	Comments	
5.	60	5.80	1.5											
							·	Hole	Casing	Der	th to	GR	OUNDWATER PRO	GRESS
INS	TALLA Date	Tip De	TAILS	op RZ Base	Туре	Date		Depth	Depth	Wa	ater	Comme	ents	

REPORT NUMBER

co-	ORDIN	ATES			RIG TY BOREI	'PE HOLE DIAME	TER (m	nm) :	Dando 20 200	000	SHEET DATE CO	OMMEN	Sheet 1 of 1 ICED 19/04/2022	
GR	DUND I	EVEL (n	nOD)		BORE	HOLE DEPTH	ł (m)	:	5.30		DATE CO	OMPLE	TED 19/04/2022	
	ENT	Lior	ncor		SPT H	AMMER REF	. NO.				BORED	BY	W.Cahill	
	SINEER	Pun	CN C.E		ENERG	st RAHO (%)			San	nnles	55ED B	F.C	
Depth (m)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	(m)	Recovery	Field Test Results	Standpipe
0	TOPS	OIL				<u>x1/x x1/x x</u>		0.20						
	Mottle grave	d brown	sandy SIL	Г/CLAY with	occasional	- <u>×</u> o		0.80						
1	Soft to grave	o firm dar I and occ	k brown sa asional co	indy SILT/C obles	LAY with some				AA175570	В	1.00		N = 5 (2, 2, 1, 1, 2, 1)	
2									AA175571	в	2.00		N = 10 (2, 2, 3, 2, 2, 3)	
3									AA175572	в	3.00		N = 19 (3, 3, 4, 4, 5, 6)	
4	Very s some	stiff grey/l cobbles	black sand and occas	y very grave onal small b	lly CLAY with ouldersa			3.80	 AA175573	В	4.00		N = 44/75 mm (23, 2, 44)	
5	Obstru	uction						5.30	AA175574	в	5.00		N = 40 (5, 6, 8, 11, 9, 12)	
6		Dorenta	c at 5.50 f											
8														
9														
HA			Time	SELLING		Water	Ca	sing	Sealed	Ris	e T	ime	VATER STRIKE DET	AILS
ron	(m)	10 (m)	(h) (h)	omments		Strike	De	pth	At) (r	nin)	Slow	
3. 5.	20	4.10 5.30	1 1.5			3.60	3.	60	3.90	3.0	0	20	Slow	
										1		GF	ROUNDWATER PRO	GRES
INS	TALLA	TION DE	TAILS			Date	, [Hole Depth	Casing	De W	pth to ater	Comme	ents	
[Date	Tip Dep	th RZ Top	RZ Base	Туре									
REN	MARKS	1hr Ere location	cting Covid and hand	I 19 Dafe W dug inspect	orking Area . CA ion pit were carr	T scanned ied out .	I	D - Small B - Bulk I LB - Larg	Die Legen Disturbed (tub) Disturbed je Bulk Disturbe	d		UT - Sam P - L	Undisturbed 100mm Diameter ple Indisturbed Piston Sample	

REPORT NUMBER

00			eld Road	, l'erenure	, Dublin 6	/PF				Dando 20	000	SHEET		Sheet 1 of 1	
GR		LEVEL (m)D)		BORE	HOLE DIA HOLE DE	AMETE PTH (r	ER (m n)	m) 2	200 5.40		DATE CO	ommen omple ⁻	ICED 19/04/2022 TED 19/04/2022	
CLI	ENT GINEER	Liono	cor h C.E		SPT H	AMMER F	REF. N) (%)	0.				BORED PROCE	BY SSED B	W.Cahill F.C	
Depth (m)			Desc	cription		-egend		Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0 1 2 -3 -4 -5 -6 -7 -8	Light brown sandy SILT/CLAY with occasional t gravel Firm to stiff dark brown sandy SILT/CLAY with s gravel and occasional cobbles Stiff to very stiff dark brown sandy silty gravelly with occasional cobbles Very stiff to hard grey/black sandy gravelly CLA some cobbles and occasional small boulders Obstruction End of Borehole at 6.40 m				ccasional fine				0.30 0.70 3.40 4.50 6.40	AA171709 AA171709 AA171710 AA171711 AA171712 AA171713 AA171714	BBB	1.00 2.00 3.00 4.00 5.00 6.00		N = 12 (2, 2, 3, 2, 3, 4) $N = 24$ (4, 3, 5, 6, 6, 7) $N = 32$ (8, 7, 5, 8, 10, 9) $(10, 14, 11, 11, 8, 10)$ $N = 75$ (10, 17, 18, 21, 11, 25) $N = 75/225 mm$ (16, 17, 32, 18, 25)	
- 9 	ARD ST	RATA BOF	ING/CHIS	FLLING										VATER STRIKE DET.	
Eror			Time			W	ater	Cas	sing s	Sealed	Ris	e T	ïme		
3. 4. 6.	.60 .30 .20	3.80 4.50 6.40	(h) 0 0.5 1 1.5			St	rike	De	pth	At	<u> </u>) (r	nin)	No water strike	
													GF	ROUNDWATER PRO	GRESS
INS	TALLA		AILS				Date	Г	Hole Depth	Casing Depth	De W	pth to ater	Comme	ents	
	Date	Tip Deptl	n RZ Top	RZ Base	Туре				-opui						
RE	MARKS	i 1hr Erect location a	ing Covid and hand	19 Dafe W dug inspec	/orking Area . C/ tion pit were carr	T scanne ied out .	ed		Samp D - Small B - Bulk D LB - Larg Env - Env	Disturbed (tub) Disturbed (tub) Disturbed e Bulk Disturbe	d) ed	+ Vial + Tub)	UT - Sam P - U W - V	Undisturbed 100mm Diameter ple Indisturbed Piston Sample Water Sample	

	J.SL	т	RIAL PIT	RECO	RD					REPORT N	umber 013	
CON	TRACT	Fortfield Road , Terenure , Dublin	6					TRIAL P	IT NO.	TPO)1	
LOG	GED BY	I.Reder	CO-ORDINAT	ES /EL (m)				- SHEET DATE S DATE C		Shee D 14/0 TED 14/0	et 1 of 1 4/2022 4/2022	
CLIE ENGI	NT NEER	Lioncor Punch C.E						METHO	D	JCB		
									Sample	es	(Pa)	ometer
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (h	Hand Peneti (KPa)
0.0	TOPSOI	L		<u>17 711 11</u>	0.30							
-	Firm, bro	own, slightly sandy slightly gravelly C			0.50							
-	with high	auff, greyish brown, slightly sandy gr n subangular to subrounded cobbles	avelly CLAY s content					AA163096	6 В	0.70		
_ 1.0 _ _ _ _ _	Firm to s with high content	stiff, greyish brown, slightly sandy gr n subangular to subrounded cobbles	avelly CLAY s and boulders		1.10							
2.0	Soft to fi	rm, greyish brown, sandy gravelly C	LAY with high		2.10		(Seepage)	AA163097	В	1.70		
	Firm to s with high boulders	ilar cobbles content stiff, greyish brown, slightly sandy gr a subangular to subrounded cobbles s content	avelly CLAY s and low		2.40			AA163098	в В	2.70		
 	End of T	rial Pit at 3.00m			3.00							
-												
- - - 4.0												
-												
- - -												
Grou Seep	age flow a	Conditions at 2.1m								1		
Stab	ility table											
Gene	eral Rema	rks										

	BSL	т	RIAL PIT I	RECO	RD					report n 24	umber 013	
CON	TRACT	Fortfield Road , Terenure , Dublin	6					TRIAL P	IT NO.	TPO	2	
LOG	GED BY	l.Reder	CO-ORDINAT	ES				- SHEET DATE S DATE C	TARTE	Shee D 14/04 TED 14/04	et 1 of 1 4/2022 4/2022	
CLIE	NT	Lioncor	GROUND LEV	/EL (m)				EXCAVA		JCB		
ENG		Punch C.E										
									Sample	es	a)	meter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KI	Hand Penetro (KPa)
0.0	TOPSO	L		$\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}}$	0.40							
- - -	Soft to fi Firm to s	rm, brown, slightly sandu slightly gra	avelly CLAY		0.70							
- - - - -	content							AA163099	B	1.00		
2.0					2.40			AA163100) B	2.00		
	Stoff to v high sub content	very stiff, grey, slightly sandy gravell angular to subrounded cobbles and	y CLAY with I boulders		2.00							
- 3.0 	End of T	rial Pit at 3.00m			3.00			AA173101	В	3.00		
4.0												
- - - -												
Grou TP d	i ndwater (ry	Conditions		<u>ı</u>	I	I	1				1	I
TP s	ility table											
Gene	eral Rema	rks										

	A BSL	1	RIAL PIT	RECO	RD					REPORT N	umber 013	
CON	TRACT	Fortfield Road , Terenure , Dublin	6					TRIAL P	PIT NO.	TPO	3	
LOG	GED BY	I.Reder	CO-ORDINAT	ËS				- SHEET DATE S DATE C	TARTEL	Shee 0 14/0 TED 14/0	et 1 of 1 4/2022 4/2022	
CLIE	NT	Lioncor	GROUND LE	VEL (m)					ATION D	JCB		
ENG		Punch C.E							Sample	es	2	leter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa	Hand Penetrom (KPa)
0.0	TOPSO	IL		$\frac{\sqrt{1}}{1} \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}}$								
-	Firm, br	own, slightly sandy slightly gravelly	CLAY		0.30							
- - - - 1.0	Firm to with hig	stiff, greyish brown, slightly sandy g h subangular to subrounded cobble	ravelly CLAY s content	קיימן אין אין אין אין 1 ס ס ס ס ס	0.50			AA173103	в	0.80		
- - - - - - 2.0	Firm to with hig content	stiff, greyish brown, slightly sandy gr h subangular to subrounded cobble	ravelly CLAY s and boulders	1.000000000000000000000000000000000000	1.50			AA173104	В	1.80		
-	TP term	inated due to many big boulders			2.40							
- - - - 3.0		inai Fil al 2.4011										
- - - -												
- - - - - -												
- - - -												
TP d	indwater (Iry	Conditions										
Stab TP s	ility table											
Gene TP te	eral Rema erminated	r ks at 2.4m due to big boulders										

	т	RIAL PIT	RECO	RD					REPORT N	umber 013	
CON	TRACT Fortfield Road , Terenure , Dublin (6						IT NO.	TPO	4	
LOG	GED BY I.Reder		ES VFL (m)				DATE S	TARTED	14/04 TED 14/04	4/2022 4/2022	
CLIE ENGI	NT Lioncor NEER Punch C.E		• = = ()				EXCAVA METHO	ATION D	JCB		
								Sample	S	a)	neter
	Geotechnical Description		-egend	Depth m)	Elevation	Nater Strike	Sample Ref	Type	Depth	/ane Test (KP	Hand Penetror KPa)
0.0	TOPSOIL						0,11				
-	Firm, brown, slightly sandy slightly gravelly C	CLAY		0.30			AA173106	в	0.50		
- - - - - - -	Firm, greyish brown, slightly sandy very grav with high subangular cobbles low boulders a gravel lenses content	relly CLAY and sandy		0.70				P	1.50		
- - - 2.0 -	Soft to firm, greyish brown, sandy very grave high subangular to subrounded cobbles and boulders content	elly CLAY with		2.00		(Seepage)	AA173107	в	1.50		
- - - - -				3.00		(Sīow)	AA173108	В	2.50		
- 3.0 - - - - - -	End of Trial Pit at 3.00m										
- 4.0 - - -											
-											
Grou Seep	ndwater Conditions age flow at 2.0m; slow water flow at 2.8m		<u> </u>								
Stab	l ity nstable from 2.0m										
Gene	eral Remarks										

Appendix 2

Laboratory Report

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-16335-1		
Initial Date of Issue:	11-May-2022		
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	John Clancy		
Project	24013 Fortfield Rd Terenure (Punch)		
Quotation No.:	Q20-19951	Date Received:	04-May-2022
Order No.:		Date Instructed:	04-May-2022
No. of Samples:	7		
Turnaround (Wkdays):	7	Results Due:	12-May-2022
Date Approved:	11-May-2022		
Approved By:			
and			

Selo -

Details:

Stuart Henderson, Technical Manager

Results - Leachate

Client: IGSL			Che	mtest J	ob No.:	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335
Quotation No.: Q20-19951			Chemte	est Sam	ple ID.:	1421621	1421622	1421623	1421624	1421625	1421626	1421627
Order No.:			Clie	nt Samp	le Ref.:	AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106
			Sa	ample Lo	ocation:	BH01	BH03	BH04	TP01	TP02	TP03	TP04
		Sample Type: Top Depth (m):					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):				1.0	1.0	2.0	0.70	1.0	0.80	0.50	
Determinand	Accred.	SOP	Туре	Units	LOD							
рН	U	1010	10:1		N/A	8.4	8.5	8.6	8.5	8.5	8.5	8.5
Ammonium	U	1220	10:1	mg/l	0.050	0.12	0.055	0.098	0.10	0.078	0.081	< 0.050
Ammonium	N 1220 10:1 mg/kg 0.10		1.4	0.64	1.2	1.2	0.92	0.95	0.57			
Boron (Dissolved)	U 1455 10:1 mg/kg 0.01		< 0.01	< 0.01	0.12	0.12	< 0.01	0.12	0.13			
Benzo[j]fluoranthene	N	U 1455 10:1 mg/kg 0.01 N 1800 10:1 μg/l 0.010			< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	

Client: IGSL		Che	emtest .	Job No.:	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335
Quotation No.: Q20-19951		Chem	test San	nple ID.:	1421621	1421622	1421623	1421624	1421625	1421626	1421627
Order No.:		Cli	ent Sam	ple Ref.:	AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106
		S	Sample L	_ocation:	BH01	BH03	BH04	TP01	TP02	TP03	TP04
			Samp	ole Type:	SOIL						
			Top De	epth (m):	1.0	1.0	2.0	0.70	1.0	0.80	0.50
			Asbes	stos Lab:	DURHAM						
Determinand	Accred.	SOP	Units	LOD							
АСМ Туре	U	2192		N/A	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected						
Moisture	N	2030	%	0.020	12	15	11	19	12	13	13
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] 0.44	[A] 1.9	[A] 0.43	[A] 23	[A] 0.65	[A] 3.8	[A] 2.0
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] 2.8	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] 1.7
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 12	[A] 4.2	[A] 13	[A] 2.4	[A] 16	[A] 9.4	[A] 4.7
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.016	[A] 0.026	[A] < 0.010	[A] 0.055	[A] 0.017	[A] 0.032	[A] 0.026
Arsenic	U	2455	mg/kg	0.5	9.8	7.3	9.3	22	9.4	9.5	7.0
Barium	U	2455	mg/kg	0	50	33	53	140	71	38	37
Cadmium	U	2455	mg/kg	0.10	1.6	0.55	1.6	2.4	1.5	1.4	0.58
Chromium	U	2455	mg/kg	0.5	14	12	16	25	13	13	15
Molybdenum	U	2455	mg/kg	0.5	2.5	0.8	2.7	3.7	2.7	2.2	0.9
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	25	10	25	26	25	21	11
Mercury	U	2455	mg/kg	0.05	0.06	0.06	0.05	0.09	0.05	0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	37	15	43	56	37	31	16
Lead	U	2455	mg/kg	0.50	15	15	17	26	14	15	12
Selenium	0	2455	mg/kg	0.25	1.3	0.97	1.5	2.4	1.5	1.2	1.1
	U	2455	mg/kg	0.50	64	51	79	95	12	69	50
Chromium (Trivalent)	N	2490	mg/kg	1.0	14	12	16	25	13	13	15
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliabetia TPL CE CC	IN NI	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	IN N	2000	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH > C8 C10		2000	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12		2000	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16		2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	ma/ka	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C35-C44	N	2680	ma/ka	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	ma/ka	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	2680	ma/ka	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C7-C8	N	2680	ma/ka	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C8-C10	U	2680	ma/ka	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	U	2680	mg/ka	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16	U	2680	mg/ka	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0

Client: IGSL		Ch	emtest .	Job No.:	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335
Quotation No.: Q20-19951		Chem	test San	nple ID.:	1421621	1421622	1421623	1421624	1421625	1421626	1421627
Order No.:		Cli	ent Sam	ple Ref.:	AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106
		5	Sample I	_ocation:	BH01	BH03	BH04	TP01	TP02	TP03	TP04
			Samp	ole Type:	SOIL						
			Top De	epth (m):	1.0	1.0	2.0	0.70	1.0	0.80	0.50
			Asbes	stos Lab:	DURHAM						
Determinand	Accred.	SOP	Units	LOD							
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10						
Benzene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Toluene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	2760	µg/kg	1.0	[A] 3.2	[A] < 1.0					
o-Xylene	U	2760	µg/kg	1.0	[A] 2.1	[A] < 1.0					
Methyl Tert-Butyl Ether	U	2760	µg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Phenanthrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Pyrene	Ν	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Coronene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20
PCB 28	Ν	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 52	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Project:	24013	Fortfield	Rd	Terenure	(Punch)
----------	-------	-----------	----	----------	---------

Chemtest Job No:	22-16335				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421621					Limits	
Sample Ref:	AA175560					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH01					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.46	3	5	6
Loss On Ignition	2610	U	%	2.7			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		9.1		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.016		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0065	0.5	10	70
Copper	1455	U	0.0010	0.010	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0080	0.080	0.5	10	30
Nickel	1455	U	0.0005	0.0052	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.37	3.7	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.0	60	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	12					

Project:	24013	Fortfield	Rd	Terenure	(Punch)
----------	-------	-----------	----	----------	---------

Chemtest Job No:	22-16335				LandfIII Waste Acceptance Criteria		
Chemtest Sample ID:	1421622					Limits	
Sample Ref:	AA175553					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH03					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.93	3	5	6
Loss On Ignition	2610	U	%	3.4			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	Ν	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	Ν	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.017	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	0.0006	0.0064	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0008	0.0078	0.5	10	70
Copper	1455	U	0.0021	0.021	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0031	0.031	0.5	10	30
Nickel	1455	U	0.0009	0.0089	0.4	10	40
Lead	1455	U	0.0006	0.0055	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.0	10	800	15000	25000
Fluoride	1220	U	0.36	3.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	Ν	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.9	< 50	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	15					

Project:	24013	Fortfield	Rd	Terenure	(Punch)
----------	-------	-----------	----	----------	---------

Chemtest Job No:	22-16335				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421623					Limits	
Sample Ref:	AA175566					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH04					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.47	3	5	6
Loss On Ignition	2610	U	%	2.1			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.9		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0052	0.5	10	70
Copper	1455	U	0.0007	0.0073	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.010	0.10	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.25	2.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	2.6	< 50	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	11					

Project:	24013	Fortfield	Rd	Terenure	(Punch)
----------	-------	-----------	----	----------	---------

Chemtest Job No:	22-16335				LandfIII Waste Acceptance Criteria		
Chemtest Sample ID:	1421624					Limits	
Sample Ref:	AA163096					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP01					hazardous	Hazardous
Top Depth(m):	0.70				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.85	3	5	6
Loss On Ignition	2610	U	%	3.8			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	Ν	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0053	0.5	10	70
Copper	1455	U	0.0011	0.012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0023	0.023	0.5	10	30
Nickel	1455	U	0.0005	0.0054	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.58	5.8	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.6	< 50	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.090					
Moisture (%)	19					

Project:	24013	Fortfield	Rd	Terenure	(Punch)
----------	-------	-----------	----	----------	---------

Chemtest Job No:	22-16335				Landfill V	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421625					Limits	
Sample Ref:	AA163099					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP02					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.44	3	5	6
Loss On Ignition	2610	U	%	2.7			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		9.0		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching test		eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0057	0.5	10	70
Copper	1455	U	0.0008	0.0082	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0052	0.052	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.35	3.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	3.8	< 50	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	12			

Project:	24013	Fortfield	Rd	Terenure	(Punch)
----------	-------	-----------	----	----------	---------

Chemtest Job No:	22-16335				Landfill V	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421626					Limits	
Sample Ref:	AA173103					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP03					hazardous	Hazardous
Top Depth(m):	0.80				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.54	3	5	6
Loss On Ignition	2610	U	%	3.3			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	Ν	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	Ν	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.022	-	To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching tes		eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0056	0.5	10	70
Copper	1455	U	0.0011	0.011	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0064	0.064	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.36	3.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.0	60	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Project:	24013	Fortfield	Rd	Terenure	(Punch)
----------	-------	-----------	----	----------	---------

Chemtest Job No:	22-16335				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421627					Limits	
Sample Ref:	AA173106					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP04					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.74	3	5	6
Loss On Ignition	2610	U	%	3.1			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	Ν	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	Ν	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.019		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching tes		eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0006	0.0064	0.5	2	25
Barium	1455	υ	< 0.005	< 0.0005	20	100	300
Cadmium	1455	υ	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0009	0.0087	0.5	10	70
Copper	1455	U	0.0017	0.017	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0026	0.026	0.5	10	30
Nickel	1455	U	0.0008	0.0085	0.4	10	40
Lead	1455	U	0.0005	0.0050	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.47	4.7	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	78	780	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	5.2	52	500	800	1000

Solid Information				
Dry mass of test portion/kg	0.090			
Moisture (%)	13			

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1421621	AA175560		BH01		A	Amber Glass 250ml
1421621	AA175560		BH01		A	Plastic Tub 500g
1421622	AA175553		BH03		A	Amber Glass 250ml
1421622	AA175553		BH03		A	Plastic Tub 500g
1421623	AA175566		BH04		A	Amber Glass 250ml
1421623	AA175566		BH04		A	Plastic Tub 500g
1421624	AA163096		TP01		A	Amber Glass 250ml
1421624	AA163096		TP01		A	Plastic Tub 500g
1421625	AA163099		TP02		A	Amber Glass 250ml
1421625	AA163099		TP02		A	Plastic Tub 500g
1421626	AA173103		TP03		A	Amber Glass 250ml
1421626	AA173103		TP03		A	Plastic Tub 500g
1421627	AA173106		TP04		A	Amber Glass 250ml
1421627	AA173106		TP04		A	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID

Test Methods

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Кеу	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

UKAS UKAS 2183 Final Report

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-17076-1		
Initial Date of Issue:	18-May-2022		
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	John Clancy		
Project	24013 Fortfield Road Terenure (Punch)		
Quotation No.:	Q20-19951	Date Received:	10-May-2022
Order No.:		Date Instructed:	10-May-2022
No. of Samples:	6		
Turnaround (Wkdays):	7	Results Due:	18-May-2022
Date Approved:	18-May-2022		
Approved By:			
1			

Details:

Stuart Henderson, Technical Manager

Client: IGSL			Che	ob No.:	22-17076	22-17076		
Quotation No.: Q20-19951			Chemte	est Sam	ple ID.:	1424873	1424874	
			Cli	ent Sam	ple ID.:	AA175571	AA171709	
			Sa	ample Lo	ocation:	BH05	BH06	
				e Type:	SOIL	SOIL		
				oth (m):	2.0	1.0		
Determinand	Accred.	SOP	Туре	Units	LOD			
рН	U	1010	10:1		N/A	8.4	8.7	
Ammonium	U	1220	10:1	mg/l	0.050	0.18	0.59	
Ammonium	Ν	1220	10:1	0.10	2.1	7.5		
Boron (Dissolved)	U	U 1455 10:1 mg/kg 0.01 < 0.01 < 0.01						
Benzo[j]fluoranthene	N	1800	10:1	µg/l	0.010	< 0.010	< 0.010	

Client: IGSL		Ch	emtest .	Job No.:	22-17076	22-17076	22-17076	22-17076	22-17076	22-17076
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1424870	1424871	1424872	1424873	1424874	1424875
		С	lient Sa	mple ID.:	AA175561	AA175554	AA175567	AA175571	AA171709	AA171710
		9	Sample I	Location:	BH01	BH03	BH04	BH05	BH06	BH06
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	2.0	2.0	3.0	2.0	1.0	2.0
			Asbes	stos Lab:				DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A				-	-	
Asbestos Identification	U	2192		N/A				No Asbestos Detected	No Asbestos Detected	
Moisture	Ν	2030	%	0.020	11	11	13	11	16	9.7
pH (2.5:1)	Ν	2010		4.0	[A] 8.8	[A] 9.4	[A] 9.0			[A] 9.2
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40				[A] < 0.40	[A] < 0.40	
Magnesium (Water Soluble)	Ν	2120	g/l	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010			[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	[A] 0.012	[A] 0.047	[A] 0.022			[A] 0.013
Total Sulphur	U	2175	%	0.010	[A] 0.025	[A] 0.023	[A] 0.046			[A] 0.026
Sulphur (Elemental)	U	2180	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Chloride (Water Soluble)	U	2220	g/l	0.010	[A] < 0.010	[A] < 0.010	[A] 0.014			[A] 0.023
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	< 0.010			< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50				[A] < 0.50	[A] < 0.50	
Sulphide (Easily Liberatable)	Ν	2325	mg/kg	0.50				[A] 18	[A] 24	
Ammonium (Water Soluble)	U	2220	g/l	0.01	< 0.01	< 0.01	< 0.01			< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] < 0.010	[A] 0.014	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Arsenic	U	2455	mg/kg	0.5				1.4	1.7	
Barium	U	2455	mg/kg	0				8	12	
Cadmium	U	2455	mg/kg	0.10				0.21	0.27	
Chromium	U	2455	mg/kg	0.5				1.9	1.9	
Molybdenum	U	2455	mg/kg	0.5				< 0.5	< 0.5	
Antimony	Ν	2455	mg/kg	2.0				< 2.0	< 2.0	
Copper	U	2455	mg/kg	0.50				3.2	3.4	
Mercury	U	2455	mg/kg	0.05				< 0.05	< 0.05	
Nickel	U	2455	mg/kg	0.50				4.2	5.5	
Lead	U	2455	mg/kg	0.50				2.9	2.3	
Selenium	U	2455	mg/kg	0.25				0.25	< 0.25	
Zinc	U	2455	mg/kg	0.50				11	9.1	
Chromium (Trivalent)	N	2490	mg/kg	1.0				1.9	1.9	
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50				< 0.50	< 0.50	
Mineral Oil (TPH Calculation)	Ν	2670	mg/kg	10				< 10	< 10	
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C35-C44	N	2680	ma/ka	1.0				[A] < 1.0	[A] < 1.0	

Client: IGSL		Ch	emtest .	Job No.:	22-17076	22-17076	22-17076	22-17076	22-17076	22-17076
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1424870	1424871	1424872	1424873	1424874	1424875
		С	lient Sa	mple ID.:	AA175561	AA175554	AA175567	AA175571	AA171709	AA171710
		S	Sample I	ocation:	BH01	BH03	BH04	BH05	BH06	BH06
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	2.0	2.0	3.0	2.0	1.0	2.0
			Asbes	stos Lab:				DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD						
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0				[A] < 5.0	[A] < 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0				[A] < 5.0	[A] < 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0				[A] < 10	[A] < 10	
Benzene	U	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0	
Toluene	U	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0	
Ethylbenzene	U	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0	
m & p-Xylene	U	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0	
o-Xylene	U	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0	
Methyl Tert-Butyl Ether	U	2760	µg/kg	1.0				[A] < 1.0	[A] < 1.0	
Naphthalene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Acenaphthylene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Acenaphthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Fluorene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Phenanthrene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Anthracene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Fluoranthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Pyrene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[a]anthracene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Chrysene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[b]fluoranthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[k]fluoranthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[a]pyrene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Coronene	Ν	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Total Of 17 PAH's	N	2800	mg/kg	0.20				[A] < 0.20	[A] < 0.20	
PCB 28	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 52	Ν	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 90+101	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 118	N	2815	ma/ka	0.0010				[A] < 0.0010	[A] < 0.0010	

<u> Results - Soil</u>

Client: IGSL	Chemtest Job No.:			22-17076	22-17076	22-17076	22-17076	22-17076	22-17076	
Quotation No.: Q20-19951	Chemtest Sample ID.:		1424870	1424871	1424872	1424873	1424874	1424875		
	Client Sample ID.:		AA175561	AA175554	AA175567	AA175571	AA171709	AA171710		
	Sample Location:		BH01	BH03	BH04	BH05	BH06	BH06		
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
			Top D	epth (m):	2.0	2.0	3.0	2.0	1.0	2.0
			Asbe	stos Lab:				DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD						
PCB 153	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 138	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 180	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
Total Phenols	U	2920	mg/kg	0.10				< 0.10	< 0.10	

Project: 24013 Fortfield Road Terenure (Punch)

Chemtest Job No:	22-17076				Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1424873					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA175571					reactive	
Sample Location:	BH05					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.33	3	5	6
Loss On Ignition	2610	U	%	5.6			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0070		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0012	0.013	0.5	10	70
Copper	1455	U	0.0010	0.0095	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0079	0.079	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	0.004	0.036	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.24	2.4	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	9.9	99	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	11

Waste Acceptance Criteria

Project: 24013 Fortfield Road Terenure (Punch)

Chemtest Job No:	22-17076				Landfill \	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1424874					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA171709					reactive	
Sample Location:	BH06					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.42	3	5	6
Loss On Ignition	2610	U	%	2.9			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.6		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0069	0.5	10	70
Copper	1455	U	0.0011	0.011	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0077	0.077	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.41	4.1	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.5	65	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	16

Waste Acceptance Criteria

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1424870		AA175561	BH01		A	Amber Glass 250ml
1424870		AA175561	BH01		A	Plastic Tub 500g
1424871		AA175554	BH03		A	Amber Glass 250ml
1424871		AA175554	BH03		A	Plastic Tub 500g
1424872		AA175567	BH04		A	Amber Glass 250ml
1424872		AA175567	BH04		A	Plastic Tub 500g
1424873		AA175571	BH05		A	Amber Glass 250ml
1424873		AA175571	BH05		А	Plastic Tub 500g
1424874		AA171709	BH06		A	Amber Glass 250ml
1424874		AA171709	BH06		A	Plastic Tub 500g
1424875		AA171710	BH06		A	Amber Glass 250ml
1424875		AA171710	BH06		A	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Test Methods

SOP	Title	Parameters included	Method summary
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Кеу			
U	UKAS accredited		
Μ	MCERTS and UKAS accredited		
Ν	Unaccredited		
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis		
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis		
Т	This analysis has been subcontracted to an unaccredited laboratory		
I/S	Insufficient Sample		
U/S	Unsuitable Sample		
N/E	not evaluated		
<	"less than"		
>	"greater than"		
SOP	Standard operating procedure		
LOD	Limit of detection		

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently

corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u> Appendix 3

Waste Classification Report

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)

- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

22-001-20 Fortfield Terenure

Description/Comments

Project 22-001-20

Classified by

Name:	Company:
Austin Hynes	O'Callaghan Moran & Associates
Date:	Unit 15 Melbourne Business Park,
19 May 2022 13:55 GMT	Model Farm Road
Telephone:	Cork
+353 (0)21 4345366	

Site Fortfield Terenure

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline[™] Certification:

Course Hazardous Waste Classification

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	BH01	1.0	Non Hazardous		2
2	BH03	1.0	Non Hazardous		5
3	BH04	2.0	Non Hazardous		8
4	BH05	2.0	Non Hazardous		11
5	BH06	1.0	Non Hazardous		14
6	TP01	0.70	Non Hazardous		17
7	TP02	1.0	Non Hazardous		20
8	TP03	0.80	Non Hazardous		23
9	TP04	0.50	Non Hazardous		26

Related documents

#	Name	Description
1	OCM Waste Stream Updated 2021	waste stream template used to create this Job

Report

Created by: Austin Hynes	
--------------------------	--

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	29
Appendix B: Rationale for selection of metal species	30
Appendix C: Version	31

Date

Created date: 19 May 2022 13:55 GMT

Classification of sample: BH01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
BH01	Chapter:
Sample Depth:	
1.0 m	Entry:
Moisture content:	
12%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	by trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		9.8	mg/kg	1.32	11.553	mg/kg	0.00116 %	~	
3	4	boron {	<mark>xide</mark> } 215-125-8	1303-86-2		0.44	mg/kg	3.22	1.265	mg/kg	0.000126 %	\checkmark	
4	*	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		1.6	mg/kg	1.142	1.632	mg/kg	0.000163 %	\checkmark	
5	4	chromium in chrom <mark>oxide (worst case)</mark>	hium(III) compounds }	s {		14	mg/kg	1.462	18.269	mg/kg	0.00183 %	~	
6	4	chromium in chrom compounds, with th of compounds spe 024-017-00-8	nium(VI) compounds ne exception of bari cified elsewhere in t	s { chromium (VI) um chromate and this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) oxi</mark> 215-270-7	de } 1317-39-1		25	mg/kg	1.126	25.131	mg/kg	0.00251 %	\checkmark	
8	4	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	15	mg/kg	1.56	20.89	mg/kg	0.00134 %	\checkmark	
9	4	mercury {	dichloride } 231-299-8	7487-94-7		0.06	mg/kg	1.353	0.0725	mg/kg	0.00000725 %	\checkmark	
10	4	molybdenum { mol 042-001-00-9	<mark>ybdenum(VI) oxide</mark> 215-204-7	} 1313-27-5		2.5	mg/kg	1.5	3.349	mg/kg	0.000335 %	\checkmark	
11	4	nickel { nickel chro 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		37	mg/kg	2.976	98.323	mg/kg	0.00983 %	\checkmark	
12	4	selenium { nickel s 028-031-00-5	<mark>elenate</mark> } 239-125-2	15060-62-5		1.3	mg/kg	2.554	2.964	mg/kg	0.000296 %	\checkmark	
13	4	zinc { zinc chromat 024-007-00-3	<mark>e</mark> } 236-878-9	13530-65-9		64	mg/kg	2.774	158.523	mg/kg	0.0159 %	\checkmark	
14	۲	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	her; MTBE; /lpropane 216-653-1	1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>

#			Determinand		Note	User entered	l data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor	-		value	MC /	Used
16		benzene				<0.001	ma/ka		<0.001	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
17		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18		ethylbenzene				<0.001	ma/ka		<0.001	ma/ka	<0.000001 %		
10		601-023-00-4	202-849-4	100-41-4		<0.001	iiig/itg		<0.001	ing/kg	<0.0000001 /0		LOD
		xylene											
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		0.0053	mg/kg		0.0047	mg/kg	0.000000473 %	~	
20	4	cyanides { salts exception of compl ferricyanides and n specified elsewhere	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
21		naphthalene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3		<0.01	iiig/itg		<0.01				LOD
22	0	acenaphthylene	205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		acenaphthene		200 00 0	\square								
23			201-469-6	83-32-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		fluorene				0.04			0.04				1.00
24			201-695-5	86-73-7		<0.01	mg/кg		<0.01	mg/ĸg	<0.000001 %		<lod< td=""></lod<>
25		phenanthrene				-0.01	malka		-0.01	malka	-0.00001.9/		
25			201-581-5	85-01-8	-	<0.01	тту/ку		<0.01	тту/ку	<0.00001 %		<lod< td=""></lod<>
26		anthracene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<1.0D
			204-371-1	120-12-7									.205
27	۰	fluoranthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-912-4	206-44-0									
28	0	pyrene	204-927-3	129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20		benzo[a]anthracen	e			<0.01	ma/ka		<0.01	ma/ka	<0.00001.%		
29		601-033-00-9	200-280-6	56-55-3		<0.01	шу/ку		<0.01	шу/ку	<0.00001 /8		LOD
30		chrysene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<1 OD
		601-048-00-0	205-923-4	218-01-9			ing/ng			ing/kg			.200
31		benzo[b]fluoranthe	ne			<0.01	ma/ka		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2									
32		benzo[k]fluoranthe	ne			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9	-								
33		benzo[a]pyrene; be	enzo[def]chrysene		_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
<u> </u>		601-032-00-3	200-028-5	50-32-8	\vdash								
34	8		b05-803-2	103-30-5	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
<u> </u>		dibenz[a b]anthrac	203-093-2 ene	193-39-3	┢								
35		601-041-00-2	200-181-8	53-70-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36	۲	benzo[ghi]perylene	3			<0.01	mg/ka		<0.01	mg/ka	<0.000001 %		<lod< td=""></lod<>
			205-883-8	191-24-2									
37		phenol		400.05.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2	\vdash							\vdash	
38	۲	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
				,						Total:	0.0349 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

xylene: (conc.: 4.73e-07%)

HazWasteOnline[™] Report created by Austin Hynes on 19 May 2022

Classification of sample: BH03

Sample details

•		
Sample name:	LoW Code:	
BH03	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.0 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	hy trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		7.3	mg/kg	1.32	8.381	mg/kg	0.000838 %	~	
3	\$	boron {	<mark>xide</mark> } 215-125-8	1303-86-2		1.9	mg/kg	3.22	5.32	mg/kg	0.000532 %	\checkmark	
4	*	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.55	mg/kg	1.142	0.546	mg/kg	0.0000546 %	\checkmark	
5	4	chromium in chron <mark>oxide (worst case)</mark>	hium(III) compounds } 215-160-9	{ • chromium(III)		12	mg/kg	1.462	15.251	mg/kg	0.00153 %	~	
6	*	chromium in chron compounds, with the of compounds spe 024-017-00-8	nium(VI) compounds he exception of barin cified elsewhere in t	s { chromium (VI) um chromate and his Annex }	_	<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
7	*	copper { dicopper 029-002-00-X	oxide; copper (I) oxi 215-270-7	<mark>de</mark> } 1317-39-1		10	mg/kg	1.126	9.79	mg/kg	0.000979 %	~	
8	*	lead {	<mark>.te</mark> } 231-846-0	7758-97-6	1	15	mg/kg	1.56	20.345	mg/kg	0.0013 %	\checkmark	
9	*	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.06	mg/kg	1.353	0.0706	mg/kg	0.00000706 %	\checkmark	
10	4	molybdenum { mol 042-001-00-9	ybdenum(VI) oxide 215-204-7	} 1313-27-5		0.8	mg/kg	1.5	1.044	mg/kg	0.000104 %	\checkmark	
11	*	nickel {	<mark>mate</mark> } 238-766-5	14721-18-7		15	mg/kg	2.976	38.821	mg/kg	0.00388 %	\checkmark	
12	*	selenium {	<mark>elenate</mark> } 239-125-2	15060-62-5		0.97	mg/kg	2.554	2.154	mg/kg	0.000215 %	\checkmark	
13	*	zinc { zinc chroma 024-007-00-3	t <mark>e</mark> } 236-878-9	13530-65-9		51	mg/kg	2.774	123.027	mg/kg	0.0123 %	\checkmark	
14	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane	4624.04.4	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		003-181-00-X	210-053-1	1034-04-4									

Image: black	#			Determinand		Note	User entered	l data	Conv. Factor	Compound co	onc.	Classification value	Applied	Conc. Not Used
Image: second			EU CLP index number	EC Number	CAS Number	CLP						Value	MC	0000
	16		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Interine			601-020-00-8	200-753-7	71-43-2	_								
	17		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
10 10 1000000000000000000000000000000000000			601-021-00-3	203-625-9	108-88-3	_								
Notice interval Notice int	18	۲	ethylbenzene	000 040 4	400 44 4	4	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			601-023-00-4	202-849-4	100-41-4	_								
2 2 <td< td=""><td>19</td><td></td><td>601-022-00-9</td><td>202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]</td><td>95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]</td><td></td><td><0.001</td><td>mg/kg</td><td></td><td><0.001</td><td>mg/kg</td><td><0.0000001 %</td><td></td><td><lod< td=""></lod<></td></td<>	19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
$ \begin{array}{ $	20	*	cyanides { salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			naphthalene											
22 a acenaphthylene c0.01 mg/kg c0.01 mg/kg c0.00001% cLOD 23 a acenaphthylene 201-695-5 83-32-9 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.00001% cLOD 24 a fuorene 201-695-5 86-73-7 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.00001% cLOD 25 a phenanthrene 201-581-5 85-01-8 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.00001% cLOD 26 a anthracene 204-371-1 120-12-7 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.001 mg/kg c.0.00001% cLOD 27 a fuoranthene 204-927-3 f129-00-0 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.001 mg/kg c.0.00001% cLOD cLOD </td <td>21</td> <td></td> <td>601-052-00-2</td> <td>202-049-5</td> <td>91-20-3</td> <td></td> <td><0.01</td> <td>mg/kg</td> <td></td> <td><0.01</td> <td>mg/kg</td> <td><0.000001 %</td> <td></td> <td><lod< td=""></lod<></td>	21		601-052-00-2	202-049-5	91-20-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22 p05-917-1 p08-96-8 c.001 mgkg c.001 mgkg c.001 mgkg c.001 mgkg c.00001% c.000 23 acenaphthene p01-469-6 p3-32-9 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.0001% c.000 24 fluorene p01-695-5 p8-73-7 c.0.01 mg/kg c.0.01 mg/kg c.0.001 mg/kg c.0.0001% c.000 26 phenanthrene p01-581-5 p8-73-7 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.00001% c.000 27 fluoranthene p01-371-1 t20-12-7 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.001 mg/kg c.0.00001% c.0.00 28 pyrene c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.001 mg/kg c.0.00001% c.0.00 20	00		acenaphthylene				0.01			0.01		0.000004.0/		
2 a acona highting -0.01 mg/m -0.01 mg/m -0.001 mg/m -0.0001 mg/m -0.00001 mg/m <th< td=""><td>22</td><td></td><td></td><td>205-917-1</td><td>208-96-8</td><td></td><td><0.01</td><td>тд/кд</td><td></td><td><0.01</td><td>mg/kg</td><td><0.000001 %</td><td></td><td><lod< td=""></lod<></td></th<>	22			205-917-1	208-96-8		<0.01	тд/кд		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
p01-469-6 p3-32-9 close lage close close <thc> close <thclose< th=""> <thclos< td=""><td>23</td><td></td><td>acenaphthene</td><td></td><td></td><td></td><td><0.01</td><td>ma/ka</td><td></td><td><0.01</td><td>ma/ka</td><td><0.000001 %</td><td></td><td><1.0D</td></thclos<></thclose<></thc>	23		acenaphthene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<1.0D
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20			201-469-6	83-32-9		10.01	iiig/itg			iiig/kg	<0.000001 /0		LOD
Image: second	24	۲	fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25 Phenanthrene 201-581-5 85-01-8 200001 % 2000000 % 2000000 % 2000000 % 2000000 % 2000000 % <				201-695-5	86-73-7	_								
26 anthracene 200-27 anthracene c.0.01 mg/kg c.0.01 mg/kg c.0.00001 % c.000 27 fluoranthene 205-912-4 206-44-0 c.0.01 mg/kg c.0.01 mg/kg c.0.00001 % c.0.00 28 prene 205-912-4 206-44-0 c.0.01 mg/kg c.0.01 mg/kg c.0.00001 % c.0.00 29 benzo[a]anthracene 204-927-3 [129-00-0 c.0.01 mg/kg c.0.01 mg/kg c.0.0001 % c.000 29 benzo[a]anthracene 204-927-3 [129-00-0 c.0.01 mg/kg c.0.01 mg/kg c.0.001 % c.1.00 30 benzo[a]anthracene 200-280-6 j6-55-3 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.001 % c.1.00 31 benzo[bl[fuoranthene 205-91-92 c.0.01 mg/kg c.0.01 mg/kg c.0.01 mg/kg c.0.001 % c.1.00 32 benzo[k][fuoranthene 205-91	25	8	phenanthrene	201-581-5	85-01-8	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20 200-371-1 120-12-7 200-371-1 120-12-7 200-371-1 120-12-7 200-371-1 120-12-7 1100-12	26		anthracene				-0.01	ma/ka		-0.01	malka	-0.000001.8/		
27 • fluoranthene -0.01 mg/kg -0.01 mg/kg -0.01 mg/kg -0.01 mg/kg -0.01 mg/kg -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.000001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.00001 % -0.000001 % -0.000001 % -0.000001 % -0.000001 % -0.000001 % -0.000001 % -0.000001 % -0.000001 % -0.0000001 % -0.000001 % -0.0000001 % -0.0000001 % -0.0000001 % -0.0000001 % -0.0000001 % -0.0000000 % -0.00000	20			204-371-1	120-12-7		<0.01	тту/ку		<0.01	тту/ку	<0.000001 %		<lod< td=""></lod<>
1 205-912-4 206-44-0 1	27	۲	fluoranthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				205-912-4	206-44-0									
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	28	۲	pyrene	004 007 0	400.00.0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29 berzolzjaminaciene <0.01			hanzalalanthrasan	204-927-3	129-00-0									
1001000000000000000000000000000000000	29		601-033-00-9	e 200-280-6	56-55-3	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30 initial constraints initial cons initial c		_	chrysene	200-200-0	00-00-0									
31 benzo[b]fluoranthene <0.01	30		601-048-00-0	205-923-4	218-01-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31 601-034-00-4 205-91-9 205-99-2 <0.01	24		benzo[b]fluoranthe	ne	1		.0.04			.0.04		.0.000004.0/		1.00
32 benzo[k]fluoranthene <0.01	31		601-034-00-4	205-911-9	205-99-2		<0.01	тід/кд		<0.01	пу/кд	<0.00001 %		<lod< td=""></lod<>
32 ⁶⁰¹⁻⁰³⁶⁻⁰⁰⁻⁵ ²⁰⁵⁻⁹¹⁶⁻⁶ ²⁰⁷⁻⁰⁸⁻⁹ ²⁰⁰¹ ^{11g/kg} ^{2000001 %} ²¹⁰⁰⁰ 33 ^{benzo[a]} pyrene; benzo[def]chrysene ⁶⁰¹⁻⁰³²⁻⁰⁰⁻³ ²⁰⁰⁻⁰²⁸⁻⁵ ⁵⁰⁻³²⁻⁸ ²⁰⁰⁰¹ ^{mg/kg} ^{2000001 %} ²¹⁰⁰ 34 ^{indeno[123-cd]} pyrene ²⁰⁵⁻⁸⁹³⁻² ¹⁹³⁻³⁹⁻⁵ ²⁰⁰⁰¹ ^{mg/kg} ²⁰⁰⁰¹ ^{mg/kg} ^{2000001 %} ^{LOD} 35 ^{dibenz[a,h]} anthracene ⁶⁰¹⁻⁰⁴¹⁻⁰⁰⁻² ²⁰⁰⁻¹⁸¹⁻⁸ ⁵³⁻⁷⁰⁻³ ²⁰⁰⁰¹ ^{mg/kg} ²⁰⁰⁰¹ ^{mg/kg} ^{2000001 %} ^{LOD} 36 ^{benzo[ghi]} perylene ²⁰⁵⁻⁸⁸³⁻⁸ ¹⁹¹⁻²⁴⁻² ²⁰⁰¹ ^{mg/kg} ²⁰⁰⁰¹ ^{mg/kg} ^{2000001 %} ^{LOD} 37 ^{phenol} ⁶⁰⁴⁻⁰⁰¹⁻⁰⁰⁻² ²⁰³⁻⁶³²⁻⁷⁷ ¹⁰⁸⁻⁹⁵⁻² ²⁰⁰⁰¹ ^{mg/kg} ²⁰⁰⁰⁰¹ ²⁰⁰⁰ ^{LOD} 38	32		benzo[k]fluoranthe	ne			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<1.0D
33 benzo[a]pyrene; benzo[def]chrysene <0.01	<u> </u>		601-036-00-5	205-916-6	207-08-9	1_	.0.01	ing/ing						.200
601-032-00-3 200-028-5 50-32-8 control control <thcontro< th=""> control control<!--</td--><td>33</td><td></td><td>benzo[a]pyrene; be</td><td>enzo[def]chrysene</td><td></td><td></td><td><0.01</td><td>mg/ka</td><td></td><td><0.01</td><td>mg/ka</td><td><0.000001 %</td><td></td><td><lod< td=""></lod<></td></thcontro<>	33		benzo[a]pyrene; be	enzo[def]chrysene			<0.01	mg/ka		<0.01	mg/ka	<0.000001 %		<lod< td=""></lod<>
34 • indeno[123-cd]pyrene <0.01			601-032-00-3	200-028-5	50-32-8									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	34	8	indeno[123-cd]pyre	ene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
35 dibenz[a,h]anthracene <0.01 mg/kg <0.01 mg/kg <0.00001 % <lod< th=""> 36 0 0 0 0.01 mg/kg <0.01</lod<>				205-893-2	193-39-5	-								
36 benzo[ghi]perylene <0.01 mg/kg <0.01 mg/kg <0.000001 % <lod< th=""> 37 phenol 604-001-00-2 205-683-8 191-24-2 <0.01</lod<>	35		openzia, njanthrac 601-041-00-2	ene 200-181-8	53-70-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36 10 205-883-8 191-24-2 <0.01 mg/kg <0.01 mg/kg <0.000001 % <lod< th=""> 37 phenol 604-001-00-2 203-632-7 108-95-2 <0.1</lod<>		0	benzo[ghi]pervlene	•										
37 phenol 604-001-00-2 203-632-7 108-95-2 <0.1 mg/kg <0.1 mg/kg <0.00001 % <lod< th=""> 38 polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3 <0.001</lod<>	36	3	-13 -17 - 7 - 9 - 0 - 16	205-883-8	191-24-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
0 604-001-00-2 203-632-7 108-95-2 <0.01 mg/kg <0.001 mg/kg <0.00001 % <lod< th=""> 38 polychlorobiphenyls; PCB <0.001</lod<>	27		phenol				-0.1	ma/ka		-0.1	malka	<0.00001.9/		~I 0D
38 polychlorobiphenyls; PCB <0.001 mg/kg <0.0010 mg/kg <lod< th=""></lod<>	51		604-001-00-2	203-632-7	108-95-2		<0.1	ing/kg		<0.1	ing/kg			
602-039-00-4 215-648-1 1336-36-3 Total: 0.0222 %	38	0	polychlorobiphenyl	s; PCB			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			602-039-00-4	215-648-1	1336-36-3						Total	0.0232.0/		

L	1.			
м	٠e	۶ı	1	

Кеу	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: BH04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
BH04	Chapter:
Sample Depth:	
2.0 m	Entry:
Moisture content:	
11%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 11% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor 051-005-00-X	trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394 mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		9.3	mg/kg	1.32	11.062 mg/kg	0.00111 %	~	
3	4	boron {	<mark>xide</mark> } 215-125-8	1303-86-2		0.43	mg/kg	3.22	1.247 mg/kg	0.000125 %	\checkmark	
4	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		1.6	mg/kg	1.142	1.647 mg/kg	0.000165 %	\checkmark	
5	4	chromium in chrom <mark>oxide (worst case)</mark>	hium(III) compounds }	\$ { • <mark>chromium(III)</mark>		16	mg/kg	1.462	21.067 mg/kg	0.00211 %	\checkmark	
6	4	chromium in chrom compounds, with th of compounds spe 024-017-00-8	nium(VI) compounds ne exception of barin cified elsewhere in t	s { chromium (VI) um chromate and his Annex }		<0.5	mg/kg	2.27	<1.135 mg/kg	<0.000113 %		<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) oxi</mark> 215-270-7	de } 1317-39-1		25	mg/kg	1.126	25.358 mg/kg	0.00254 %	\checkmark	
8	4	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	17	mg/kg	1.56	23.889 mg/kg	0.00153 %	\checkmark	
9	4	mercury {	<mark>dichloride</mark> } 231-299-8	7487-94-7		0.05	mg/kg	1.353	0.061 mg/kg	0.0000061 %	\checkmark	
10	4	molybdenum {	ybdenum(VI) oxide 215-204-7	} 1313-27-5		2.7	mg/kg	1.5	3.649 mg/kg	0.000365 %	\checkmark	
11	4	nickel { nickel chro 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		43	mg/kg	2.976	115.297 mg/kg	0.0115 %	\checkmark	
12	4	selenium {	<mark>elenate</mark> } 239-125-2	15060-62-5		1.5	mg/kg	2.554	3.451 mg/kg	0.000345 %	\checkmark	
13	4	zinc { zinc chromat 024-007-00-3	<mark>e</mark> } 236-878-9	13530-65-9		79	mg/kg	2.774	197.439 mg/kg	0.0197 %	\checkmark	
14	۲	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	her; MTBE; /lpropane 216-653-1	1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>

ED CLP index number EC Number CAS Number <th< th=""><th>#</th><th></th><th colspan="3">Determinand</th><th>Note</th><th>User entered of</th><th>data</th><th>Conv. Factor</th><th colspan="2">Conv. Compound conc.</th><th>Classification value</th><th>Applied</th><th>Conc. Not Used</th></th<>	#		Determinand			Note	User entered of	data	Conv. Factor	Conv. Compound conc.		Classification value	Applied	Conc. Not Used
Intervente			EU CLP index number	EC Number	CAS Number	CLP			. doto.				MC	0000
001020003 p007537 [71432 comparison	16		benzene	T			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Interine			601-020-00-8	200-753-7	71-43-2									
Image: construction of the construction of	17		toluene	203-625-9	108-88-3	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
18 •		_	ethylbenzene	200 020 0	100 00 0	-								
Number Number<	18	۲	601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
19 501-222-00-9 202-422 [1] 64-7.6 [1] <0.001 mgkq <0.001 mgkq <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.00001 % <0.000001 % <0.00001 % <0.			xvlene	202 010 1		+								
20 Consides (* galacityctopen consides with the mercuric oxycyanides and those specification desometer in this Annex) -0.5 mg/kg 1.884 x-0.942 mg/kg c0.0000942 %	19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
DOD:007-00-5 Image: Control of the contro	20	4	cyanides { ^a salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyanid lex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21 aphthalene			006-007-00-5											
pointset out out out out out out out out out ou	21		naphthalene	boo 040 5	01 00 0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			601-052-00-2	202-049-5	91-20-3									
23 acenaphthene 201-469-6 B3-32-9 <0.01 mg/kg <0.01 mg/kg <0.00001 % <lod< th=""> 24 fluorene 201-685-5 B6-73-7 <0.01</lod<>	22	0	acenaphinylene	205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23 201-469-6 83-32-9 2001 mg/mg 2001 mg/mg 2000001% 2100 24 # floorene 201-695-5 86-73-7 <0.01			acenaphthene				0.01			0.04		0.000004.0/		1.00
24 Ituorene 201-695-5 B6-73-7 C0.01 mg/kg <lic0.01< li=""> mg/kg</lic0.01<>	23			201-469-6	83-32-9		<0.01	mg/кg		<0.01	mg/кg	<0.000001 %		<lod< td=""></lod<>
Image: constraint of the second sec	24		fluorene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<1 OD
22 phenanthrene 201-581-5 B5-01-8 -0.01 mg/kg -0.01 mg/kg -0.00001% -1.00 26 anthracene 204-371-1 120-12-7 -0.01 mg/kg -0.001 mg/kg -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.00001% -0.0000001% -0.000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.0000001% -0.00000001% -0.00000001% -0.0000001%	27			201-695-5	86-73-7		CO.OT Ing/kg				iiig/itg			LOD
Image: Control (Control (Contro (Control (Control (Control (Control (Contro (Control (Control (Co	25	8	phenanthrene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26 anthracene 204-371-1 120-12-7 c.0.01 mg/kg c.0.01 mg/kg c.0.00001 % cLOD 27 a fluoranthene 205-912-4 206-44-0 c.0.01 mg/kg c0.01 mg/kg c0.00001 % cLOD 28 a pPrine 204-927-3 129-00-0 c.0.01 mg/kg c0.01 mg/kg c0.00001 % cLOD 29 benzolajanthracene c0.01 mg/kg c0.01 mg/kg c0.00001 % cLOD 30 chrysene co.01 mg/kg c0.01 mg/kg c0.00001 % cLOD 501-048-00-4 205-911-9 205-99-2 c.0.01 mg/kg c0.01 mg/kg c0.00001 % cLOD 31 benzolb[fluoranthene co.01 mg/kg c0.01 mg/kg c0.00001 % cLOD 32 benzolp[fluoranthene co.01 mg/kg c0.01 mg/kg c0.00001 % cLOD 33 benzolp[fluoranthene co.01 mg/kg c0.01 mg/kg c0.00001 % cLOD 34 fidenc				201-581-5	85-01-8									
Image: Point	26	Θ	anthracene	004 074 4	100 10 7	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27 Model 205-912-4 206-44-0 <0.01 mg/kg <0.01 mg/kg <0.00001 % <lod< th=""> 28 pyrene</lod<>		_	fluoranthene	204-371-1	120-12-7	\vdash								
28 pyrene	27			205-912-4	206-44-0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20 204-927-3 129-00-0 119-00-0	28		pyrene	1			<0.01	ma/ka		~0.01	ma/ka	<0.00001 %		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20			204-927-3	129-00-0		<0.01	шу/ку		<0.01	шу/ку	<0.000001 /8		LOD
a 601-033-00-9 200-280-6 56-55-3 chrysen chrysene chr	29		benzo[a]anthracen	e			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
30 chrysene <0.01 mg/kg <0.01 mg/kg <0.01 mg/kg <0.01 mg/kg <0.01 mg/kg <0.00001 % <			601-033-00-9	200-280-6	56-55-3									
601-048-00-0 205-923-4 218-01-9	30		chrysene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31 benzolphiloranthene <0.01 mg/kg <0.01 mg/kg <0.00001 % <lod< th=""> 32 benzolkjfluoranthene 205-911-9 205-99-2 -0.01 mg/kg <0.01</lod<>			601-048-00-0	205-923-4	218-01-9	-								
32 benzo[k]fluoranthene 205-99-2 <	31		benzo[b]fluoranthe	ne	005 00 0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			benzo[k]fluoranthe	205-911-9	205-99-2	-							-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32		601-036-00-5	205-916-6	207-08-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00		benzo[a]pvrene: be	enzo[def]chrvsene		\vdash	0.04			0.01		0.000001.0/		1.00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33		601-032-00-3	200-028-5	50-32-8	-	<0.01	mg/кg		<0.01	mg/кg	<0.000001 %		<lod< td=""></lod<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	8	indeno[123-cd]pyre	ene			<0.01	mg/ka		<0.01	mg/ka	<0.000001 %		<lod< td=""></lod<>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				205-893-2	193-39-5									
36 benzo[ghi]perylene <0.01 mg/kg <0.01 mg/kg <0.00001 % <lod< th=""> 37 phenol 604-001-00-2 203-632-7 108-95-2 <0.1</lod<>	35		dibenz[a,h]anthrac	ene 200-181-8	53-70-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36 10 205-883-8 191-24-2 <0.01 mg/kg <0.01 mg/kg <0.000001 % <lod< th=""> 37 phenol 604-001-00-2 203-632-7 108-95-2 <0.1</lod<>		0	benzo[ahi]pervlene	•	00100	\vdash								
37 phenol <0.1 mg/kg <0.1 mg/kg <0.0001 % <lod< th=""> 38 polychlorobiphenyls; PCB <0.001</lod<>	36	-	- 13 - 17 - 17 - 17 - 17	205-883-8	191-24-2	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
or 604-001-00-2 203-632-7 108-95-2 <0.01 mg/kg <0.001 mg/kg <0.00001 % <lod< th=""> 38 • polychlorobiphenyls; PCB <0.001</lod<>	27	.†	phenol		·		-0.1	ma/ka		-0.1	malka	<0.00001.9/		
38 polychlorobiphenyls; PCB <0.001 mg/kg <0.001 mg/kg <0.000001 <lod< th=""></lod<>	51		604-001-00-2	203-632-7	108-95-2		<u> </u>	ing/kg		<0.1	mg/kg	<u></u>		
Total: 0.041 %	38	0	polychlorobiphenyl	s; PCB	1226.26.2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			002-033-00-4	10-040-1	1330-30-3						Total	0.041 %	-	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HazWasteOnline[™] Report created by Austin Hynes on 19 May 2022

Classification of sample: BH05

Sample details

-		
Sample name:	LoW Code:	
BH05	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.0 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 11% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	h <mark>y trioxide</mark> }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		1.4	mg/kg	1.32	1.665	mg/kg	0.000167 %	~	
3	4	boron {	<mark>xide</mark> } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
4	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.21	mg/kg	1.142	0.216	mg/kg	0.0000216 %	\checkmark	
5	4	chromium in chron <mark>oxide (worst case)</mark>	hium(III) compounds } 215-160-9	{ • chromium(III)		1.9	mg/kg	1.462	2.502	mg/kg	0.00025 %	~	
6	4	chromium in chron compounds, with the of compounds spe	nium(VI) compounds he exception of barin cified elsewhere in t	s { chromium (VI) um chromate and his Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
7	4	copper { dicopper 029-002-00-X	oxide; copper (I) oxi 215-270-7	<mark>de</mark> } 1317-39-1	_	3.2	mg/kg	1.126	3.246	mg/kg	0.000325 %	~	
8	-4	lead {	<mark>ite</mark> } 231-846-0	7758-97-6	1	2.9	mg/kg	1.56	4.075	mg/kg	0.000261 %	\checkmark	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.05	mg/kg	1.353	<0.0677	mg/kg	<0.00000677 %		<lod< th=""></lod<>
10	4	molybdenum {	ybdenum(VI) oxide 215-204-7	} 1313-27-5	-	<0.5	mg/kg	1.5	<0.75	mg/kg	<0.000075 %		<lod< td=""></lod<>
11	4	nickel {	<mark>mate</mark> } 238-766-5	14721-18-7		4.2	mg/kg	2.976	11.262	mg/kg	0.00113 %	\checkmark	
12	4	selenium {	<mark>elenate</mark> } 239-125-2	15060-62-5		0.25	mg/kg	2.554	0.575	mg/kg	0.0000575 %	\checkmark	
13	4	zinc { <mark>zinc chroma</mark> 024-007-00-3	t <mark>e</mark> } 236-878-9	13530-65-9		11	mg/kg	2.774	27.492	mg/kg	0.00275 %	\checkmark	
14	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-meth	her; MTBE; ylpropane	1624 04 4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		003-181-00-A	210-003-1	1034-04-4									

#		Determinand			Note	User entered	l data	Conv. Factor	Compound conc.		Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP						Value	MC	0300
16		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	_								
17		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3			_						
18	۲	ethylbenzene	000 040 4	400 44 4		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	-								
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	*	cyanides { salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		nanhthalene			+								
21		601-052-00-2	202-049-5	91-20-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22		acenaphthylene	205 017 1	b08.06.8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	acenaphthene	203-317-1	200-30-0	+								
23	9		201-469-6	83-32-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
~		fluorene				0.04			0.04		0.000004.0/		1.00
24			201-695-5	86-73-7		<0.01	mg/кg		<0.01	mg/кg	<0.000001 %		<lod< td=""></lod<>
25	8	phenanthrene	201-581-5	85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26	8	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27		fluoranthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-912-4	206-44-0	_								
28	۵	pyrene	204-927-3	129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracen	e			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
30		chrysene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	_								
31		penzolojiluoranthe	ne	b05 00 2	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		bonzolkifluorontha	202-211-2	kno-aa-s	+							\vdash	
32			205-916-6	207-08-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]pvrene: be		201-00-3	+							\square	
33		601-032-00-3	200-028-5	50-32-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		indeno[123-cd]pyre	ene	00 02 0									
34			205-893-2	193-39-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthrac	ene 200-181-8	53-70-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	6	benzolghilpervlene			+								
36	9		205-883-8	191-24-2	<0.01 m	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>	
0-		phenol		1	+	<u> </u>			<u> </u>		0.0000 (0)		
37		604-001-00-2	203-632-7	108-95-2	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38	۲	polychlorobiphenyl	s; PCB			<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
		602-039-00-4	215-648-1	1336-36-3		30.001	ing/kg		0.001				
										Total:	0.00664 %	1	

L	1.			
м	٠e	۶ı	1	

Кеу	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: BH06

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
BH06	Chapter:
Sample Depth:	
1.0 m	Entry:
Moisture content:	
16%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 16% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	by trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %	Π	<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3	_	1.7	mg/kg	1.32	1.935	mg/kg	0.000193 %	~	
3	4	boron { <mark>diboron tric</mark> 005-008-00-8	<mark>xide</mark> } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
4	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.27	mg/kg	1.142	0.266	mg/kg	0.0000266 %	\checkmark	
5	4	chromium in chrom <mark>oxide (worst case)</mark>	hium(III) compounds }	{ • chromium(III)		1.9	mg/kg	1.462	2.394	mg/kg	0.000239 %	~	
6	4	chromium in chrom compounds, with th of compounds spe 024-017-00-8	nium(VI) compounds ne exception of barin cified elsewhere in t	s { chromium (VI) um chromate and his Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	oxide; copper (I) oxide 215-270-7	<mark>de</mark> } 1317-39-1		3.4	mg/kg	1.126	3.3	mg/kg	0.00033 %	~	
8	4	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	2.3	mg/kg	1.56	3.093	mg/kg	0.000198 %	\checkmark	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.05	mg/kg	1.353	<0.0677	mg/kg	<0.00000677 %		<lod< th=""></lod<>
10	4	molybdenum {	<mark>ybdenum(VI) oxide</mark> 215-204-7	1313-27-5		<0.5	mg/kg	1.5	<0.75	mg/kg	<0.000075 %		<lod< th=""></lod<>
11	4	nickel { nickel chro 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		5.5	mg/kg	2.976	14.112	mg/kg	0.00141 %	\checkmark	_
12	4	selenium { nickel s 028-031-00-5	<mark>elenate</mark> } 239-125-2	15060-62-5		<0.25	mg/kg	2.554	<0.638	mg/kg	<0.0000638 %		<lod< th=""></lod<>
13	4	zinc { zinc chromat 024-007-00-3	<mark>e</mark> } 236-878-9	13530-65-9		9.1	mg/kg	2.774	21.763	mg/kg	0.00218 %	\checkmark	
14	8	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; /lpropane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									

#			Determinand	1	Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	0000
16		benzene				<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
17		toluene	T			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	_							_	
18	Θ	ethylbenzene	boo 040 4	400 44 4	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	-								
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { ^a salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
21		naphthalene	b02.040.E	01 20 2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	acenanbthylene	202-049-5	91-20-3	+							-	
22	۲		205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthene				.0.01			-0.01		.0.000001.0/		
23			201-469-6	83-32-9		<0.01	тід/кд		<0.01	тід/кд	<0.000001 %		<lod< td=""></lod<>
24	8	fluorene	·			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<i od<="" td=""></i>
2.			201-695-5	86-73-7						ing/kg			.200
25	Θ	phenanthrene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-581-5	85-01-8									
26	Θ	anthracene	bo4 074 4	400 40 7	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	fluoranthene	204-371-1	120-12-7	+								
27			205-912-4	206-44-0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	pyrene	1			<0.01	ma/ka		<0.01	ma/ka	<0.000001.%		
20			204-927-3	129-00-0		<0.01	iiig/kg		<0.01	шу/ку	<0.000001 /8		LOD
29		benzo[a]anthracen	е			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
30		chrysene	005 000 1			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	-							-	
31		601-034-00-4	he b05-011-0	205-00-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe	ne	203-33-2	+								
32		601-036-00-5	205-916-6	207-08-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22		benzo[a]pyrene; be	enzo[def]chrysene		\uparrow	-0.01	ma/ka		-0.01	malka	<0.000001.9/		
33		601-032-00-3	200-028-5	50-32-8	_	<0.01	mg/kg		<0.01	тту/ку	<0.00001 %		<lod< td=""></lod<>
34	8	indeno[123-cd]pyre	ene			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
Ľ.,			205-893-2	193-39-5									
35		dibenz[a,h]anthrac	ene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	-							_	
36	Θ	Denzolânijherhiene	, 205-883-8	191-24-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		phenol			┢					_			
37		604-001-00-2	203-632-7	108-95-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38	8	polychlorobiphenyl	s; PCB	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		002 000 00-4		1000 00 0				l		Total:	0.00632 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HazWasteOnline[™] Report created by Austin Hynes on 19 May 2022

Classification of sample: TP01

Sample details

•		
Sample name:	LoW Code:	
TP01	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.70 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 19% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor 051-005-00-X	h <mark>y trioxide</mark> }	1309-64-4		<2	mg/kg	1.197	<2.394 mg/kg	g <0.000239 %	Γ	<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		22	mg/kg	1.32	24.409 mg/k	0.00244 %	~	
3	*	boron { <mark>diboron tric</mark> 005-008-00-8	<mark>xide</mark> } 215-125-8	1303-86-2		23	mg/kg	3.22	62.233 mg/k	0.00622 %	\checkmark	
4	\$	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		2.4	mg/kg	1.142	2.304 mg/k	0.00023 %	\checkmark	
5	4	chromium in chron <mark>oxide (worst case)</mark>	hium(III) compounds } 215-160-9	{ • chromium(III)		25	mg/kg	1.462	30.705 mg/k	g 0.00307 %	\checkmark	
6	*	chromium in chron compounds, with the of compounds spe	nium(VI) compounds he exception of barin cified elsewhere in t	s { chromium (VI) um chromate and his Annex }		<0.5	mg/kg	2.27	<1.135 mg/kg	g <0.000113 %		<lod< th=""></lod<>
7	*	copper { dicopper 029-002-00-X	oxide; copper (I) oxio 215-270-7	1 <mark>de</mark> } 1317-39-1		26	mg/kg	1.126	24.599 mg/k	0.00246 %	~	
8	4	lead {	<mark>ite</mark> } 231-846-0	7758-97-6	1	26	mg/kg	1.56	34.08 mg/k	0.00218 %	\checkmark	
9	\$	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.09	mg/kg	1.353	0.102 mg/k	0.0000102 %	\checkmark	
10	*	molybdenum {	ybdenum(VI) oxide 215-204-7	} 1313-27-5		3.7	mg/kg	1.5	4.664 mg/k	0.000466 %	\checkmark	
11	\$	nickel { nickel chro 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		56	mg/kg	2.976	140.06 mg/k	g 0.014 %	\checkmark	
12	\$	selenium { nickel s 028-031-00-5	elenate } 239-125-2	15060-62-5		2.4	mg/kg	2.554	5.151 mg/k	0.000515 %	\checkmark	
13	*	zinc { zinc chroma 024-007-00-3	<mark>te</mark> } 236-878-9	13530-65-9		95	mg/kg	2.774	221.465 mg/k	0.0221 %	\checkmark	
14	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10 mg/k	g <0.001 %		<lod< th=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane	4624.04.4	_	<0.001	mg/kg		<0.001 mg/k	<0.000001 %		<lod< th=""></lod<>
		003-181-00-X	210-053-1	1034-04-4								

#			Determinand		Note	User entered	l data	Conv. Factor	Compound co	onc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP						, and a second s	MC	0000
16		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	_								
17		toluene		1		< 0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
18	۲	ethylbenzene		T		< 0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyanida ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		naphthalene			+								
21		601-052-00-2	202-049-5	91-20-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22		acenaphthylene				-0.01			-0.01		-0.000001.0/		
22			205-917-1	208-96-8	1	<0.01	тід/кд		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene	·			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
20			201-469-6	83-32-9		40.01	ing/itg		<0.01	iiig/itg	<0.000001 /0		LOD
24	۲	fluorene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	1								
25	8	phenanthrene	201-581-5	85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26	8	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		fluoranthene			+								
27			205-912-4	206-44-0		<0.01	mg/кg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
28	8	pyrene	204-927-3	129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzolaanthracen	e	.20 00 0									
29		601-033-00-9	200-280-6	56-55-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		chrysene				0.04			0.01		0.000004.0/		1.00
30		601-048-00-0	205-923-4	218-01-9		<0.01	тід/кд		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
21		benzo[b]fluoranthe	ne			~0.01	ma/ka		~0.01	malka			
51		601-034-00-4	205-911-9	205-99-2		<0.01	ing/kg		20.01	ing/kg	COUCCUT 76		
32		benzo[k]fluoranthe	ne			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9									.200
33		benzo[a]pyrene; be	enzo[def]chrysene			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
Ľ		601-032-00-3	200-028-5	50-32-8	1_								
34	۲	indeno[123-cd]pyre	ene			<0.01	ma/ka		<0.01	mg/ka	<0.000001 %		<lod< td=""></lod<>
			205-893-2	193-39-5	1					59			
35		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36	۲	benzo[ghi]perylene)			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
			205-883-8	191-24-2		10.01	ing/kg		<u></u>	ing/kg			~200
37		phenol				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
Ľ		604-001-00-2	203-632-7	108-95-2	1_								
38		polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
										Total:	0.0552 %		

L	1.			
м	٠e	۶ı	1	

Кеу	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
TP02	Chapter:
Sample Depth:	
1.0 m	Entry:
Moisture content:	
12%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	hy trioxide }	1200 64 4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3		9.4	mg/kg	1.32	11.081	mg/kg	0.00111 %	~	
3	4	boron { diboron tric 005-008-00-8	<mark>xide</mark> } 215-125-8	1303-86-2		0.65	mg/kg	3.22	1.869	mg/kg	0.000187 %	\checkmark	
4	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		1.5	mg/kg	1.142	1.53	mg/kg	0.000153 %	\checkmark	
5	4	chromium in chrom <mark>oxide (worst case)</mark>	hium(III) compounds } 215-160-9	{ • chromium(III)		13	mg/kg	1.462	16.964	mg/kg	0.0017 %	~	
6	4	chromium in chrom compounds, with the of compounds spe	nium(VI) compounds the exception of barin cified elsewhere in t	s { chromium (VI) um chromate and his Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
7	4	copper { dicopper 0 029-002-00-X	<mark>oxide; copper (I) oxi</mark> 215-270-7	de } 1317-39-1		25	mg/kg	1.126	25.131	mg/kg	0.00251 %	~	
8	4	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	14	mg/kg	1.56	19.498	mg/kg	0.00125 %	\checkmark	
9	4	mercury {	dichloride 231-299-8	7487-94-7		0.05	mg/kg	1.353	0.0604	mg/kg	0.00000604 %	\checkmark	
10	4	molybdenum {	ybdenum(VI) oxide 215-204-7	} 1313-27-5		2.7	mg/kg	1.5	3.617	mg/kg	0.000362 %	\checkmark	
11	4	nickel { <mark>nickel chro</mark> 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		37	mg/kg	2.976	98.323	mg/kg	0.00983 %	~	
12	4	selenium {	<mark>elenate</mark> } 239-125-2	15060-62-5		1.5	mg/kg	2.554	3.42	mg/kg	0.000342 %	~	
13	4	zinc { zinc chromat 024-007-00-3	t <mark>e</mark> } 236-878-9	13530-65-9		72	mg/kg	2.774	178.338	mg/kg	0.0178 %	\checkmark	
14	8	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00 X	her; MTBE; ylpropane	1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		003-101-00-7	210-000-1	1034-04-4	1								

#			Determinand	1	Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value		Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	0000
16		benzene				<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
17		toluene	T			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	_							-	
18	Θ	ethylbenzene	600.040.4	400 44 4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	-							-	
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { ^a salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
21		naphthalene	b02.040.E	01 20 2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		acenanbthylene	202-049-5	91-20-3	-							-	
22	۲		205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthene				.0.01			-0.01		-0.000001.8/		
23			201-469-6	83-32-9		<0.01	тід/кд		<0.01	тід/кд	<0.000001 %		<lod< td=""></lod<>
24	8	fluorene	·			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
2.			201-695-5	86-73-7								L	
25	Θ	phenanthrene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-581-5	85-01-8								-	
26	Θ	anthracene	bo4 074 4	400 40 7	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	fluoranthene	204-371-1	120-12-7	+								
27			205-912-4	206-44-0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	pyrene	1			<0.01	ma/ka		<0.01	ma/ka	<0.000001.%		
20			204-927-3	129-00-0		<0.01	шу/ку		<0.01	піу/ку	<0.000001 /8		
29		benzo[a]anthracen	е			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3								⊢	
30		chrysene	005 000 1			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	-							-	
31		601-034-00-4	he b05-011-0	205-00-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe	ne	203-33-2	+								
32		601-036-00-5	205-916-6	207-08-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22		benzo[a]pyrene; be	enzo[def]chrysene		\uparrow	-0.01	ma/ka		-0.01	mg/kg	<0.000001.9/		
33		601-032-00-3	200-028-5	50-32-8	_	<0.01	шу/ку		<0.01	тту/ку	<0.000001 %		<lod< td=""></lod<>
34	8	indeno[123-cd]pyre	ene			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			205-893-2	193-39-5								L	
35		dibenz[a,h]anthrac		60.70.0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		bonzo[ghi]norylong	200-181-8	53-70-3	-							-	
36	۲	Senzolânijhei hielie	205-883-8	191-24-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		phenol			+							F	
37		604-001-00-2	203-632-7	108-95-2	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38	8	polychlorobiphenyl	s; PCB	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	Γ	<lod< td=""></lod<>
			F.9 0 10 1		<u> </u>					Total:	0.0368 %	\square	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HazWasteOnline[™] Report created by Austin Hynes on 19 May 2022

Classification of sample: TP03

Sample details

•		
Sample name:	LoW Code:	
TP03	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.80 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 13% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	*	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		9.5	mg/kg	1.32	11.1	mg/kg	0.00111 %	~	
3	*	boron {	<mark>xide</mark> } 215-125-8	1303-86-2		3.8	mg/kg	3.22	10.828	mg/kg	0.00108 %	\checkmark	
4	\$	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		1.4	mg/kg	1.142	1.415	mg/kg	0.000142 %	\checkmark	
5	*	chromium in chron <mark>oxide (worst case)</mark>	hium(III) compounds }		_	13	mg/kg	1.462	16.814	mg/kg	0.00168 %	~	
6	*	chromium in chron compounds, with the of compounds spe	nium(VI) compounds he exception of barin cified elsewhere in t	s { chromium (VI) um chromate and his Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
7	4	copper { dicopper 029-002-00-X	oxide; copper (I) oxio 215-270-7	d <mark>e</mark> } 1317-39-1		21	mg/kg	1.126	20.924	mg/kg	0.00209 %	~	
8	*	lead {	<mark>ite</mark> } 231-846-0	7758-97-6	1	15	mg/kg	1.56	20.706	mg/kg	0.00133 %	\checkmark	
9	\$	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.05	mg/kg	1.353	0.0599	mg/kg	0.00000599 %	\checkmark	
10	4	molybdenum { mol 042-001-00-9	ybdenum(VI) oxide 215-204-7	} 1313-27-5		2.2	mg/kg	1.5	2.921	mg/kg	0.000292 %	~	
11	*	nickel {	<mark>mate</mark> } 238-766-5	14721-18-7		31	mg/kg	2.976	81.65	mg/kg	0.00816 %	~	
12	\$	selenium { nickel s 028-031-00-5	elenate } 239-125-2	15060-62-5	_	1.2	mg/kg	2.554	2.712	mg/kg	0.000271 %	~	
13	*	zinc { zinc chroma 024-007-00-3	<mark>te</mark> } 236-878-9	13530-65-9		69	mg/kg	2.774	169.395	mg/kg	0.0169 %	\checkmark	
14	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane	4624.04.4	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		003-181-00-X	210-053-1	1034-04-4									

#	Determinand		Note	User entered	l data	Conv. Factor	Compound conc.		Classification value	Applied	Conc. Not Used		
		EU CLP index number	EC Number	CAS Number	CLP						Value	MC	0000
16		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	_								
17		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	_								
18	۲	ethylbenzene	000 040 4	400 44 4	-	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	+								
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	*	cyanides { salts exception of compl ferricyanides and n specified elsewher	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		naphthalene			+								
21		601-052-00-2	202-049-5	91-20-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
00		acenaphthylene			1	0.01			0.04		0.000004.0/		
22		205-917-1 208-96-8				<0.01	mg/kg		<0.01	mg/кg	<0.000001 %		<lod< td=""></lod<>
23		acenaphthene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<1.0D
20			201-469-6	83-32-9		<0.01	ing/kg		<0.01	iiig/itg	<0.000001 /0		LOD
24	۲	fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	_								
25	8	phenanthrene	201-581-5	85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		anthracene			1	-0.01			.0.01		.0.000001.0/		1.00
20			204-371-1	120-12-7		<0.01	mg/kg		<0.01	тту/ку	<0.000001 %		<lod< td=""></lod<>
27	۲	fluoranthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-912-4	206-44-0	+								
28	۲	pyrene	204 027 3	120.00.0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]anthracen	204-927-3	129-00-0	+								
29		601-033-00-9	200-280-6	56-55-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		chrvsene	200 200 0		+								
30		601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31		benzo[b]fluoranthe	ne	1		-0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
51		601-034-00-4	205-911-9	205-99-2		CO.01	mg/kg		<u> </u>	ing/kg			~200
32		benzo[k]fluoranthe	ne			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9	1					59			
33		benzo[a]pyrene; be	enzo[def]chrysene	1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8	+								
34	۲	indeno[123-cd]pyre		402 20 5	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		dihanz[a h]anthraa	205-893-2	193-39-5	+								
35		601-041-00-2	200-181-8	53-70-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	0	benzo[ghi]pervlene	•		+								
36	3	- 13 - 17 - 17 - 01 - 0	205-883-8	191-24-2	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27		phenol			1	-0.1	ma/ka		-0.1	ma//	<0.00001.9/		~I 0D
51		604-001-00-2	203-632-7	108-95-2		<0.1	ing/kg		<0.1	mg/kg			
38	۲	polychlorobiphenyl	s; PCB			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		602-039-00-4	215-648-1	1336-36-3						Total	0.0246.9/		
1										iotal:	0.0340 %	1	

L	1.			
r	١E	۶ı	/	

Кеу	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

03)

Sample details

Sample name:	LoW Code:
TP04	Chapter:
Sample Depth:	
0.50 m	Entry:
Moisture content:	
13%	
(dry weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 13% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	hy trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		7	mg/kg	1.32	8.179	mg/kg	0.000818 %	~	
3	4	boron {	<mark>xide</mark> } 215-125-8	1303-86-2		2	mg/kg	3.22	5.699	mg/kg	0.00057 %	\checkmark	
4	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.58	mg/kg	1.142	0.586	mg/kg	0.0000586 %	\checkmark	
5	4	chromium in chrom <mark>oxide (worst case)</mark>	hium(III) compounds } 215-160-9	{ • chromium(III)		15	mg/kg	1.462	19.401	mg/kg	0.00194 %	~	
6	4	chromium in chrom compounds, with th of compounds spe	nium(VI) compounds ne exception of barin cified elsewhere in t	s { chromium (VI) um chromate and his Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
7	4	copper { dicopper (029-002-00-X	oxide; copper (I) oxi 215-270-7	d <mark>e</mark> } 1317-39-1		11	mg/kg	1.126	10.96	mg/kg	0.0011 %	~	
8	4	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	12	mg/kg	1.56	16.564	mg/kg	0.00106 %	\checkmark	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.05	mg/kg	1.353	<0.0677	mg/kg	<0.00000677 %		<lod< th=""></lod<>
10	4	molybdenum {	<mark>ybdenum(VI) oxide</mark> 215-204-7	1313-27-5		0.9	mg/kg	1.5	1.195	mg/kg	0.000119 %	\checkmark	
11	4	nickel { nickel chro 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		16	mg/kg	2.976	42.142	mg/kg	0.00421 %	\checkmark	
12	4	selenium {	<mark>elenate</mark> } 239-125-2	15060-62-5		1.1	mg/kg	2.554	2.486	mg/kg	0.000249 %	\checkmark	
13	4	zinc { zinc chromat 024-007-00-3	t <mark>e</mark> } 236-878-9	13530-65-9		50	mg/kg	2.774	122.75	mg/kg	0.0123 %	\checkmark	
14	8	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									

#	Determinand			Note	User entered	User entered data		Conv. Factor Compound conc.		Classification value		Conc. Not	
		EU CLP index number	EC Number	CAS Number	CLP							MC	0000
16		benzene				<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
17		toluene	T			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	_								
18	۲	ethylbenzene	600.040.4	400 44 4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	-							-	
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	cyanides { ^a salts exception of compl ferricyanides and n specified elsewhere	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
21		naphthalene	b02 040 5	01 20 2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	-	acenaphthylene	202-049-5	91-20-3	+								
22		acchaphanyiche	205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22		acenaphthene			1	.0.01			.0.01		-0.000001.8/		
23			201-469-6	83-32-9		<0.01	mg/kg		<0.01	тту/ку	<0.00001 %		<lod< td=""></lod<>
24	0	fluorene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		-	201-695-5	86-73-7									
25	0	phenanthrene	T		_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-581-5	85-01-8	+								
26	8	anthracene	00/ 271 1	120 12 7	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		fluoranthene	204-371-1	120-12-7	┢								
27			205-912-4	206-44-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
28		pyrene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		
20			204-927-3	129-00-0		<0.01	iiig/itg		<0.01				
29		benzo[a]anthracen	e			<0.01	ma/ka		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	_								
30		chrysene	bac and 4			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	-							\vdash	
31		601-034-00-4	b05-911-9	205-99-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[k]fluoranthene			+								
32		601-036-00-5	205-916-6	207-08-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; be	enzo[def]chrysene			<0.01	ma/ka		<0.01	ma/ka			
55		601-032-00-3	200-028-5	50-32-8		<0.01	шу/ку		20.01	шу/ку	<0.000001 /8		LOD
34	8	indeno[123-cd]pyre	ene			<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
			205-893-2	193-39-5									_
35		dibenz[a,h]anthrac	ene	53 70 3	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzolabilpervlene	200-101-0	55-70-5	+								
36		Sourolaniher hene	205-883-8	191-24-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
07		phenol			╞	0.4			<u> </u>	<0.1 mg/kg	0.00001.0/		1.00
37		604-001-00-2	203-632-7	108-95-2		<0.1	mg/kg		<0.1		<0.00001 %		<lod< td=""></lod<>
38	0	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
								L		Total:	0.0239 %	٢	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
9	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Report created by Austin Hynes on 19 May 2022

environmental management for business

Appendix A: Classifier defined and non EU CLP determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H332, Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Resp. Sens. 1; H334, Skin Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

EU CLP index number: 006-007-00-5 Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

• anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Report created by Austin Hynes on 19 May 2022

environmental management for business

[•] **pyrene** (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied. Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s): Calc. 1A, 13c

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings (edit as required)

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

Report created by Austin Hynes on 19 May 2022

environmental management for business

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: EU WM3 1st Edition v1.1.NI using the EU LoW HazWasteOnline Classification Engine Version: 2022.103.5089.9622 (13 Apr 2022) HazWasteOnline Database: 2022.103.5089.9622 (13 Apr 2022)

This classification utilises the following guidance and legislation: WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 17th ATP - Regulation (EU) 2021/849 of 11 March 2021