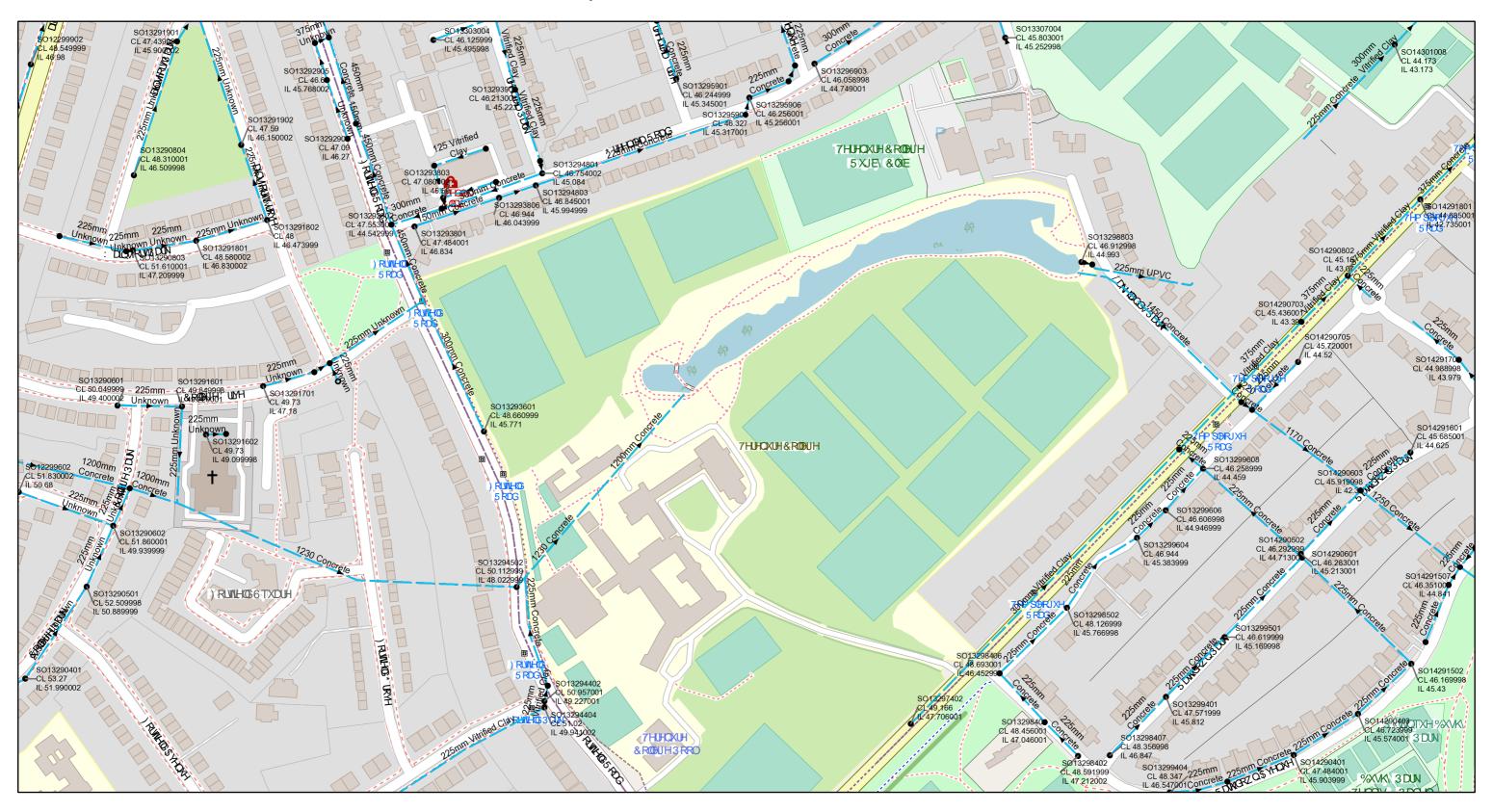


Appendix A Existing Record Drawings

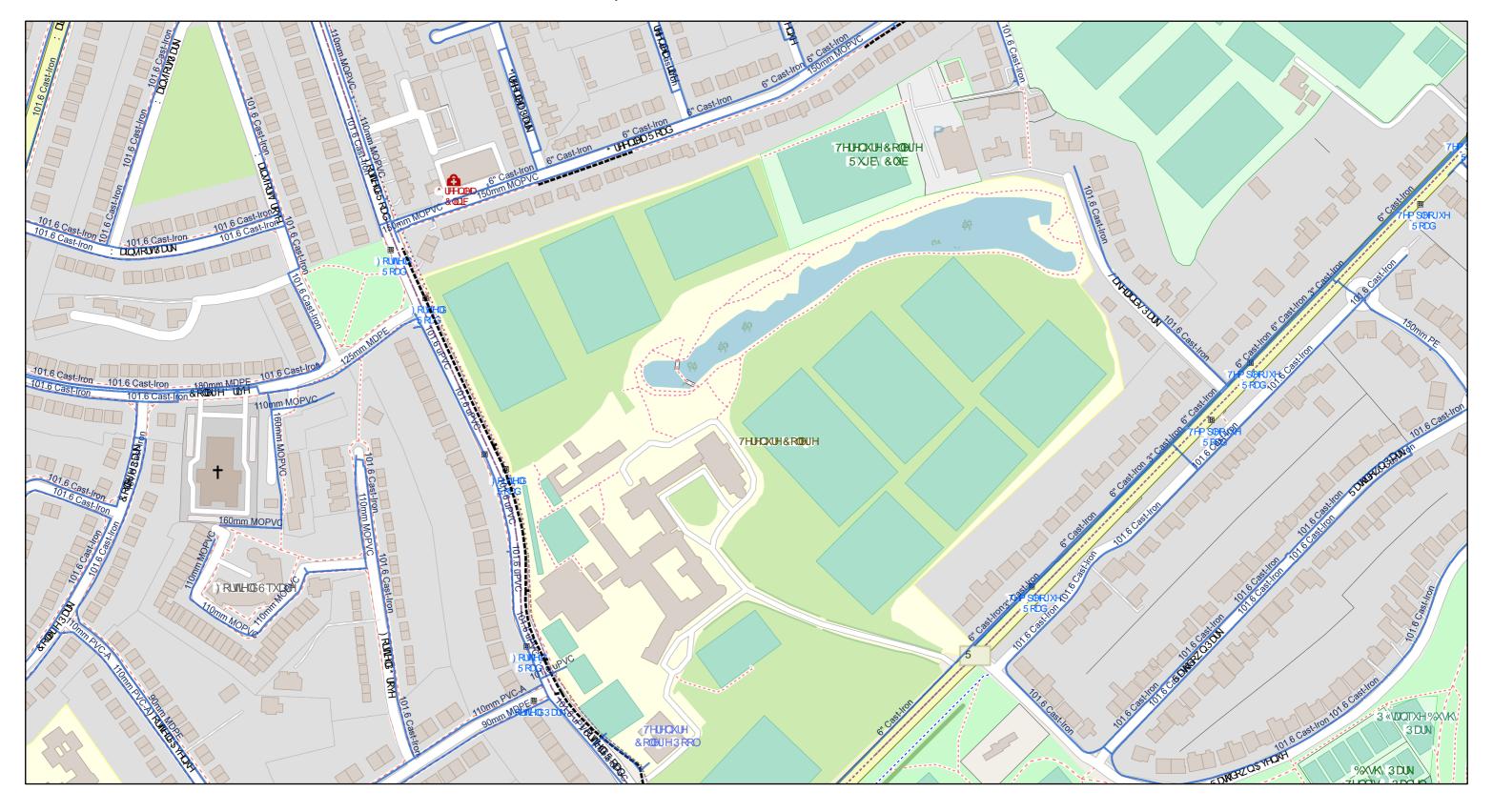
)RUWILHOG 5G)RXO :DWHU 1HWZRUN




ODS GDWD (2SHQ6WUHHW0DS FRQWU)DFHERRN ,QF DQG LWV DIILOLDWHVFRQWULEXWRUV ODS OD\HU E\ (VUL

) RUWILHOG 5G 6XUIDFH: DWHU 1HWZRU

6WRUP ODQKROHWFKER[


- 6XUIDFH *UDYLW\ 0DLQV 3ULYDWH
- 6WDQGDUG_{/DPSKROH}
- 6XUIDFH :DWHU 3UHVVXULVHG 0DLQV
- © %DFNGURS+\GUREUDNH [★] 6XUIDFH:DWHU 3UHVVXULVHG 0DLQV 3ULYDWH
- *** &DVFDG ** 2WKHU 8QNQRZQ6WRUP &XOYHUWV
- &DWFKSKWIDFH :DWHU OD QV6WRUP 2SHQ 'UDLQV
- %LIXUFDWL6RXQUIDFH *UDYLW\ 0DLQV

ODS GDWD (2SHQ6WUHHW0DS FRQWU)DFHERRN ,QF DQG LWV DIILOLDWHV FRQWULEXWRUV ODS OD\HU E\ (VUL

) RUWILHOG 5G : DWHUPDLQ 1HWZRUN

ODS GDWD < 2SHQ6WUHHWODS FRQWU)DFHERRN ,QF DQG LWV DIILOLDWHV FRQWULEXWRUV ODS OD\HU E\ (VUL

Appendix B Qbar Calculation Report

Mean Annual Flood Flow Rate Equation for **Greenfield Catchments IH124**

(Based on Institute of Hydrology report No. 124)

Project title: Fortfield Road, Terenure

Project no.: 222102

Date: 31/07/2024 Designed: D Moreton

(Complete figures in blue only)

Q Bar = 0.00108 x Area 0.89 x SAAR 1.17 x Soil 2.17

0.5

Where Units Q Bar Mean Annual Peak Flow m³/s km² Area Catchment area SAAR Standard Annual Average Rainfall mm

km

Soil Index Soil

Area description: Residential Development, Fortfield Road, Terenure

Soil characteristics: Soil type (See Table 1) (Clayey, poorly drained) => Soil index =

Refer to Geotechnical Investigation Report in Appendix E of the Engineering 0.45

(24680 m²)

Table 1 Soil WRAP Soil Characteristics Runoff Soil value 0.15 Sandy, well drained Very high Very low 2 High Low 0.3 Intermediate soils (sandy) 3 Moderate Moderate 0.4 Intermediate soils (silty) 4 Low High 0.45 Clayey, poorly drained Very high 0.5 Steel, rocky areas

Where developments are smaller than 50 ha, the analysis for determining the peak greenfield discharge rate should use 50 ha in the formula and linearly interpolate the flow rate value based on the ratio of the development to 50 ha.(Ref: Interim Code of Practice for Sustainable Drainage Systems)

SAAR 773 mm Refer to SAAR value obtained from Met Éireann data noted in Appendix C of the Engineering Planning Report

Q Bar = 0.247

Area

= 246.69 I/s = 4.93 l/s/ha

Linear Interpolation of Q Bar based on ratio of development to 50 ha

Peak greenfield discharge rate, Q _{Bar} =	12.18	l/s
Growth Curve		
Region:	Greater	Dublir
Return Period Q _{t1} :	1	year
Growth Factor for Q _{t1} :	0.85	
Allowable Discharge for 1 year return period:	10.35	l/s
Return Period Q _{t2} :	5	year
Growth Factor for Q _{t2} :	1.4	
Allowable Discharge for 5 year return period:	17.05	l/s
Return Period Q _{t3} :	25	year
Growth Factor for Q _{t3} :	2.05	
Allowable Discharge for 25 year return period:	24.96	l/s
Return Period Q _{t4} :	100	year
Growth Factor for Qt4:	2.61	

Growth curves are adopted from "Comment on Estimation of Greenfield Runoff Rates" - A.M.Crawley & C.Cunnane - National Hydrology Seminar 2003 where possible.

Discharge rate equal to 1 year greenfield site peak runoff rate or 2l/s/ha, whichever is the greater. Site critical duration storm to be used to assess attenuation storage volume.(Ref: Greater Dublin Strategic Drainage Study)

Discharge rate equal to 1 in 100 year critical duration storm to be used to assess attenuation storage volume. (Ref: Greater Dublin Strategic Drainage Study)

Appendix C Met Eireann Rainfall Data

Met Eireann
Return Period Rainfall Depths for sliding Durations
Irish Grid: Easting: 313402, Northing: 229770,

	Interval					7	Years						
DURATION	6months, 1year,	2,	3,	4,	5,	10,	20,	30,	50,	75 ,	100,	120,	
5 mins	2.7, 3.9,	4.6,	5.6,	6.4,	6.9,	8.7,	10.8,	12.2,	14.3,	16.1,	17.5,	18.4,	
10 mins	3.8, 5.5,	6.4,	7.9,	8.9,	9.6,	12.2,	15.1,	17.1,	19.9,	22.4,	24.3,	25.7,	
15 mins	4.5, 6.5,	7.6,	9.3,	10.4,	11.3,	14.3,	17.8,	20.1,	23.4,	26.3,	28.6,	30.2,	
30 mins	5.9, 8.4,	9.8,	11.9,	13.4,	14.5,	18.1,	22.3,	25.1,	29.1,	32.6,	35.4,	37.3,	
1 hours	7.8, 11.0,	12.7,	15.4,	17.1,	18.5,	23.0,	28.1,	31.5,	36.2,	40.5,	43.8,	46.0,	
2 hours	10.3, 14.4,	16.5,	19.8,	21.9,	23.6,	29.1,	35.3 ,	39.4,	45.1,	50.2,	54.1,	56.8,	
3 hours	12.1, 16.8,	19.2,	22.9,	25.4,	27.3,	33.5,	40.4,	45.0,	51.3,	56.9,	61.3,	64.2,	
4 hours	13.6, 18.7,	21.4,	25.4,	28.1,	30.2,	36.9,	44.5,	49.4,	56.2,	62.3,	66.9,	70.0,	
6 hours	16.0, 21.9,	24.9,	29.5,	32.5,	34.9,	42.4,	50.8,	56.3,	63.9,	70.6,	75.8,	79.2,	
9 hours	18.9, 25.5,	29.0,	34.2,	37.6,	40.3,	48.7,	58.1,	64.2,	72.7,	80.1,	85.8,	89.6,	
12 hours	21.2, 28.5,	32.4,	38.0,	41.7,	44.6,	53.8,	63.9,	70.5,	79.6,	87.6,	93.7,	97.7,	
18 hours	24.9, 33.3,	37.7,	44.0,	48.2,	51.5,	61.8,	73.1,	80.4,	90.5,	99.3,	106.0,	110.5,	
24 hours	28.0, 37.2,	42.0,	48.9,	53.5,	57.0,	68.2,	80.4,	88.3,	99.1,	108.6,	115.8,	120.6,	
2 days	34.9, 45.3,	50.5,	58.1,	63.1,	66.8,	78.7,	91.5,	99.7,	110.8,	120.5,	127.7,	132.6,	
3 days	40.7, 52.0,	57.7,	65.9 ,	71.2,	75.2,	87.8,	101.2,	109.7,	121.3,	131.2,	138.7,	143.6,	
4 days	45.9, 58.0,	64.1,	72.8,	78.4,	82.6,	95.8,	109.9,	118.7,	130.7,	140.9,	148.6,	153.7,	
6 days	55.2, 68.8,	75.6,	85.1,	91.3,	95.9,	110.2,	125.3,	134.8,	147.5,	158.3,	166.4,	171.8,	
8 days	63.6, 78.5,	85.8,	96.2,	102.8,	107.7,	123.1,	139.1,	149.1,	162.5,	173.8,	182.3,	187.9,	
10 days	71.4, 87.5,	95.4,	106.4,	113.4,	118.7,	134.9,	151.8,	162.2,	176.2,	188.1,	196.9,	202.7,	
12 days	78.9, 96.0,	104.3,	116.0,	123.4,	129.0,	146.0,	163.6,	174.6,	189.1,	201.4,	210.6,	216.6,	
16 days	92.9, 112.0,			142.1,									
20 days	106.2, 127.0,	136.9,	150.8,	159.5,	166.0,	185.8,	206.1,	218.5,	235.1,	248.9,	259.2,	265.9,	
25 days	122.0, 144.8,	155.6,	170.6,	180.0,	187.0,	208.3,	230.0,	243.3,	260.8,	275.5,	286.3,	293.4,	
						_							

NOTES:

These values are derived from a Depth Duration Frequency (DDF) Model update 2023 For details refer to:

'Mateus C., and Coonan, B. 2023. Estimation of point rainfall frequencies in Ireland. Technical Note No. 68. Met Eireann', Available for download at:

http://hdl.handle.net/2262/102417

The below figures are used in the Causeway Flow hydraulic modelling described in Section 2 of the Engineering Planning Report.

m5-60 =18.5

R = m5-60 minutes / m5-2 days = 18.5 / 66.8 = 0.277

SAAR = 773mm

Appendix D Uisce Éireann Pre-Connection Enquiry Confirmation of Feasibility Letter

CONFIRMATION OF FEASIBILITY

Paul Casey

Punch Consulting Carnegie House Library Road Dun Laoghaire Dublin A94C7W7

20 February 2024

Uisce Éireann

Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann

PO Box 448 South City Delivery Office Cork City

www.water.ie

Our Ref: CDS24000255 Pre-Connection Enquiry Lands at, Fortfield Road, Terenure, Dublin

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 295 unit(s) at Lands at, Fortfield Road, Terenure, Dublin, (the **Development)**.

Based upon the details provided we can advise the following regarding connecting to the networks;

- Water Connection Feasible without infrastructure upgrade by Uisce Éireann
- Wastewater Connection Feasible Subject to upgrades
- In order to accommodate the proposed connection, upgrade of the existing 225mm VC sewer on Fortfield Road to a 300mm ID sewer for approximately 60m, will be required. The Developer will be required to fund the upgrade works. The fee will be calculated at a connection application stage.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Uisce Éireann.

Stiúrthóirí / Directors: Tony Keohane (Cathaoirleach / Chairman), Niall Gleeson (POF / CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at www.water.ie/connections/get-connected/

Where can you find more information?

- Section A What is important to know?
- Section B Details of Uisce Éireann's Network(s)

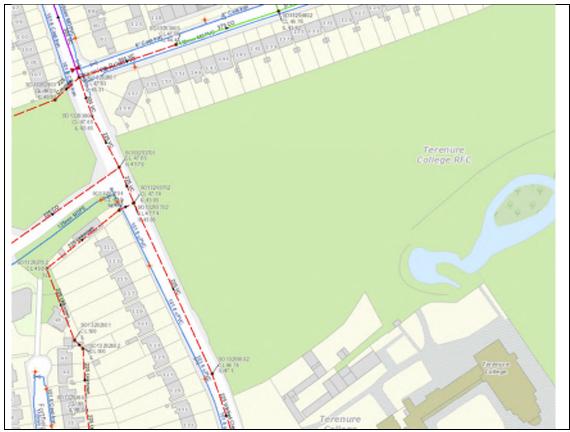
This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit www.water.ie/connections, email newconnections@water.ie or contact 1800 278 278.

Yours sincerely,

Dermot Phelan

Connections Delivery Manager


Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s).
	Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application and be granted and sign a connection agreement with Uisce Éireann.
When should I submit a Connection Application?	A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: https://www.water.ie/connections/information/charges/
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Uisce Éireann's network(s)?	Requests for maps showing Uisce Éireann's network(s) can be submitted to: datarequests@water.ie

What are the design requirements for the connection(s)?	•	The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with the Uisce Éireann Connections and Developer Services Standard Details and Codes of Practice, available at www.water.ie/connections
Trade Effluent Licensing	•	Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	•	More information and an application form for a Trade Effluent License can be found at the following link: https://www.water.ie/business/trade-effluent/about/ **trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)

Section B – Details of Uisce Éireann's Network(s)

The map included below outlines the current Uisce Éireann infrastructure adjacent the Development: To access Uisce Éireann Maps email datarequests@water.ie

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Uisce Éireann's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Uisce Éireann.

Whilst every care has been taken in respect of the information on Uisce Éireann's network(s), Uisce Éireann assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Uisce Éireann's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Uisce Éireann's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

Appendix E IGSL Limited Geotechnical Investigation Report

IGSL Limited

Punch Consulting Engineers

Fortfield Road, Terenure

Geotechnical Report

Report No. 24013

May 2022

Report

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176 E: info @igsl.ie W: www.igsl.ie Project: Fortfield Road, Terenure

Project No. 24013

Revision	Date	Title				
Rev 0	31/05/2022	Ground Investigation Report				
	Copies	Document Format	Prepared By	Reviewed By		
	0.00	PDF	Brian Green Chartered Engineer	David Green Chartered Engineer		
	То	Punch Consulting En				
Revision	Date	Title				
Rev 1						
	Copies	Document Format	Prepared By	Reviewed By		
		The state of the s	David Green	Brian Green		
			Chartered	Chartered		
-	λ (Alaba	Engineer	Engineer		
	То					
Revision	Date	Title				
	Copies	Document Format	Prepared By	Reviewed By		
	То					
Revision	Date	Title				
	Copies	Document Format	Prepared By	Reviewed By		
	То					

TABLE OF CONTENTS

Foreword

1.0 Introduction

2.0 Ground Conditions

- 2.1 Boreholes
- 2.2 Rotary Drilling and Coring
- 2.3 Trial Pits
- 2.4 Infiltration Tests

3.0 Laboratory Testing (Geotechnical)

4.0 Laboratory Testing (Environmental)

5.0 Discussion

- 5.1 Structural Foundations
- 5.2 Groundwater and Trench Stability
- 5.3 Infiltration
- 5.4 Chemical Attack on Buried Concrete
- 5.5 Disposal of Excavated Soils to Landfill

Appendices

Appendix 1	Borehole Records
Appendix 2	Rotary Records
Appendix 3	Trial Pit Records
Appendix 4	Infiltration Test Results
Appendix 5	Groundwater Monitoring
Appendix 6	Laboratory Test Results (Geotechnical)
Appendix 7	Laboratory Test Results (Environmental)
Appendix 8	Site Plan

Separate Cover Waste Characterisation Assessment (O'Callaghan Morin)

Report No. 24013 3 | P a g e

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as BS 5930 (1999), BS 1377 (Parts 1 to 9) and Engineers Ireland Specification & Related Documents for Ground Investigation in Ireland (2006). A new National Annex for use in the Republic of Ireland is currently in circulation for comment and will be adopted in the near future. In the meantime, the following Irish (IS) and European Standards or Norms are referenced:

- o IS EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- o IS EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- o IS EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- o IS EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Classification Principles
- o IS EN ISO 14689-1:2004 Geotechnical Investigation and Testing Identification & Classification of Rock, Part 1: Identification & Description

Reporting

Recommendations made and opinions expressed in this report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations.

The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points.

This report has been prepared for Punch Consulting Engineers and the information should not be used without prior written permission. The recommendations developed in this report specifically relate to the proposed development. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

In-Situ Testing

Standard penetration tests were conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Report No. 24013 4 | P a g e

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2002 and IS EN ISO 14689-1:2004. Rock weathering classification conforms to IS EN ISO 14689-1:2003 while discontinuities (bedding planes, joints, cleavages, faults etc) are classified in accordance with 4.3.3 of IS EN ISO 14689-1:2003. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Retention of Samples

Samples shall be retained for a period of 60 days following approval of the final factual report, as detailed in the Scope of Works.

Report No. 24013 5 | P a g e

1.0 Introduction

It is proposed to develop a site in Fortfield Road, Terenure. The site lies to the rear of existing houses in Greenlea Road.

An investigation of ground conditions was undertaken to ascertain the soil stratification and condition.

Fieldwork for this investigation entailed the following:

- Boreholes were constructed in 6 locations, using light cable tool techniques.
- Rotary techniques were employed at each borehole location to ascertain the presence, depth, composition and condition of bedrock to the scheduled depths.
- Trial pits were excavated in 4 locations to permit close examination and sampling of the upper soils.
- Infiltration tests were performed in 4 locations to assess the suitability of the sub-soils for soakaway purposes

This report presents an assessment of the ground conditions with respect to the proposed development.

2.0 Ground Conditions

2.1 Boreholes

Boreholes were constructed in the locations indicated on the site plan enclosed in Appendix 8, while the descriptions and depths of the various soils encountered are shown on the boring records enclosed in Appendix 1. Also shown on these records are the depths at which samples were recovered, the results of in-situ Standard Penetration Tests, and the groundwater conditions observed during the course of boring operations. The ground conditions are summarised in Table 1.

Location	Soft/firm brown sandy gravelly clay	Stiff dark brown sandy gravelly clay	Dense grey - black sandy clayey gravel	Stiff/very stiff black sandy gravelly clay
BH01	0.00 to 2.50	2.50 to 3.60	3.60 to 6.10	
BH02	0.00 to 1.50	1.50 to 3.50		3.50 to 4.20
BH03	0.00 to 2.50	2.50 to 5.90		
BH04	0.00 to 2.50	2.50 to 4.20		4.20 to 5.80
BH05	0.00 to 2.50	2.50 to 3.80		3.80 to 5.30
BH06	0.00 to 1.50	1.50 to 4.50		4.50 to 6.40

Table 1

Report No. 24013 6 | P a g e

All six boreholes encountered brown sandy gravelly clay in a soft or soft to firm condition, present to depths ranging from 1.5 metres (BH02 and BH06) to 2.5 metres (remaining boreholes). In all locations these deposits were underlain by stiff dark brown sandy gravelly clay. While BH03 was terminated in this material at a depth of 5.9 metres, BH04, BH05 and BH06 recorded a transition to black sandy gravelly clay in a stiff to very stiff condition. In BH01, the black deposits were coarser, classifying as sandy clayey gravel.

While a slow ingress of water was observed at a depth of 3.6 metres in BH05, all other holes remained dry.

2.2 Rotary Drilling and Coring

Rotary techniques were employed at each borehole location to ascertain the depth, composition and condition of bedrock. Open hole "Symmetrix" drilling techniques were used to penetrate the overburden soils, identifying the soil type from the flush returns. On the first indications of bedrock, coring techniques were employed.

The records include a detailed description of the bedrock including the rock structure, strength, and degree of weathering. In accordance with BS 5930: 2015, the records include the total core recovery (TCR), solid core recovery (SCR) and the rock quality designation (RQD). Also shown graphically is the fracture spacing.

Standard Penetration Tests (SPTs) were undertaken within overburden and also within completely weathered bedrock.

The bedrock was identified as dark grey medium strong to very strong fine grained, medium to thinly bedded Limestone. Total core recovery was 100% while solid core recovery was variable. At the end of drilling, water was present in the coreholes at depths ranging from 2.9 metres to 8.2 metres. However, these depths do not represent the standing water levels. The standpipe readings in Table 3 provide a more accurate indication of the groundwater profile.

Location	Depth of open hole drilling	Weathered Rock	Rock Coring	Standpipe (SP)	Ground water depth (m bgl)
RC01 RC02 RC03 RC04 RC05 RC06	11.00 8.00 7.50 7.50 9.00 9.00	7.8 to 8.0 7.2 to 7.5 7.1 to 7.5 8.55 to 9.00 8.70 to 9.0	11.0 to 14.5 8.0 to 11.0 7.5 to 12.5 7.5 to 13.5 9.0 to 14.0 9.0 to 14.0	SP SP SP SP	2.90 3.20 5.20 3.20 8.20 3.80

Table 2

Report No. 24013 7 | P a g e

Standpipe	Standnina Danth	Donth to water (n	a hal)	
Standpipe	Standpipe Depth	Depth to water (m bgl)		
	(m bgl)	27/04/2022	09/05/2022	
BH/RC 01	14.5	1.7	1.9	
BH/RC02	8.0	2.1	2.1	
BH/RC05	9.0	1.3	1.2	
BH/RC06	14.0	2.2	2.0	

Table 3

2.3 Trial Pits

Trial pits were excavated in four locations to facilitate close examination of the upper soils. The trial pit records are enclosed in Appendix 3.

While the soils encountered in the trial pits were described as sandy gravelly clays, there were notable variations in the soil condition.

TP01 encountered brown sandy gravelly clay in a soft to firm condition to a depth of 1.1 metres where it became firm. The soil was described as firm to stiff from 2.4 metres to the excavated depth of 3.0 metres.

TP02 encountered firm grey-brown sandy gravelly clay from 0.7 metres to 2.4 metres where the soil condition was described as stiff to very stiff.

The condition of the soil in TP03 was described as firm to a depth of 1.5 metres where it became firm to stiff. The condition of the soil in TP04 was described as firm to a depth of 2.0 metres. Water ingress below this depth resulted in water-softened spoil, belying its true in-situ condition, which was through to be firm / stiff. Water ingress at 2.0 and 2.8 metres resulted in instability of the pit sides.

2.4 Infiltration Test

The infiltration tests were performed in accordance with BRE Digest 365 'Soakaway Design'.

To obtain a measure of the infiltration rate of the sub-soils, water is poured into the test pit, and records taken of the fall in water level against time. This procedure is repeated twice more to ensure saturation of the sub-soils. Normally the results for the final stage of testing, following the saturation periods, are used for soakaway design purposes. The infiltration rate is the volume of water dispersed per unit exposed area per unit of time, and is generally expressed as metres/minute or metres/second.

In tests SA01 and SA03 there was no measurable fall in water level over the test period of 60 minutes.

In tests SA02 and SA04 very slow infiltration rates were recorded

Report No. 24013 8 | P a g e

3.0 Laboratory Testing (Geotechnical)

3.1 Particle Size Distributions

Grading curves were obtained for selected samples. The results show that the samples were well-graded, with fines values ranging from 6% to 34%. For practical reasons cobbles and boulders were omitted from the test specimens.

3.2 Index Properties

The results of plastic and liquid limit tests were used to classify the sub-soils. The majority of results fell within the CL zone of the plasticity chart.

3.3 Chemical analysis

The results of chemical testing showed low concentrations of soluble sulphates.

3.4 Rock Testing

3.4.1 Uniaxial Compression Tests

Uniaxial compression tests were performed on intact lengths of rock, in accordance with ASTM standards. The specimens are prepared as right circular cylinders with a length to diameter ratio of 2.0 to 2.5, and the ends are saw cut and ground to eliminate irregularities. The load is applied through a hydraulic ram and the compressive strength is defined as the load at failure divided by the cross-sectional area.

The specimens recorded UCS values of 60MPa to 89MPa, classifying the rock strength as strong.

3.4.2 Point Load Tests

The Point Load Index Test provides a rapid, and accurate, strength index from rock fragments unlike the Uniaxial Compression test (UCS) which requires careful preparation of intact lengths of core. The test specimen is compressed between two cones loaded from a hydraulic hand pump. The core fails due to the tensile forces over the diametral area between the points. The strength at failure is expressed as the point load index Is. For purposes of comparison the Is values are corrected to give the equivalent strength for a 50 mm diameter specimen. This is the Is50 value. From research by several workers relationships have been formulated, relating the Is values to UCS.

The results of the point load tests were mostly in the range 3 to 6 MPA, equating to UCS values ranging from 60 to 120 MPa, thereby classifying the rock strength as strong to very strong.

Report No. 24013 9 | P a g e

4.0 **Laboratory Testing (Environmental)**

Environmental testing was scheduled on selected soil samples in order to screen for

inherent contamination and to assess their suitability for disposal to an inert landfill.

Samples were tested in accordance with the RILTA Suite, which is used to determine the suitability of soils for disposal to a landfill. The RILTA suite includes Heavy Metals, Polycyclic Aromatic Hydrocarbons (PAH), TPH-CWG, BTEX, PCB and Total Organic Carbon (TOC) carried out on dry soil samples. Also included are leachate analyses, whereby leachate is generated in accordance with CEN 10:1 specification and this is tested for the presence of recognised contaminants including Heavy Metals, Dissolved Organic Carbon (DOC) and Total Dissolved Solids (TDS). An Asbestos Screen is also included in the RILTA Suite.

Report No. 24013 10 | P a g e

5.0 Discussion

The investigation revealed layers of sandy gravelly clay which have the appearance of glacial till. The stiff to very stiff black deposits in which some of the boreholes were terminated are typical of basal till, known locally as Black Boulder Clay. The overlying material has a dark brown coloration, indicative of weathering. The near-surface soils have been subjected to more intense weathering, resulting in a significant loss of strength.

By the use of rotary drilling and coring techniques, intact limestone bedrock was encountered at depths ranging from 7.5 metres to 11.0 metres.

5.1 Structural Foundations

The borehole findings suggest that the heavily weathered soils are present to depths ranging from 1.5 metres to 2.5 metres. The variable condition, and limited bearing resistance of these deposits is also reflected in the trial pit findings.

These factors would tend to preclude the use of the upper soils for founding purposes.

The underlying stiff dark brown gravelly clay is relatively incompressible, and will support foundation pressures of approximately 150 kN/m². However, the depth to these deposits will necessitate the use of trench fill techniques to anticipated depths of between 1.5 and 2.5 m BGL. Monitoring of excavations will be important to ensure that the stiff gravelly clay is reached. A major consideration will be the effect of groundwater ingress on trench stability (see Section 5.2).

While the very stiff black gravelly clay will support pressures of 200kN/m2 to 250kN/m², the depth to this material would tend to preclude direct construction of foundations.

To obtain a more accurate resistance profile consideration can be given to dynamic probing when the exact location of each structure has been established. In addition, trial excavations would be beneficial in assessing the practicality of using trench-fill techniques.

Where excavation to the depth of competent soil is deemed impractical or uneconomical, the alternative is to found the structure on piles, supported by the stiff gravelly clay or underlying bedrock.

Where piles are taken to bedrock, the designers should be cognisant of the variations in bedrock condition and structure.

5.2 Groundwater and Trench Stability

While temporary excavations within gravelly clay soils could be expected to remain stable in the short-term, any water ingress is likely to cause some instability (as evident in trial pit TP04).

Report No. 24013 11 | P a g e

Provision should therefore be made for trench control measures as required. The initial standpipe readings as shown in Table 3 indicate that the depth to water can rise to 1.2 metres below existing ground level.

It is strongly recommended that regular monitoring of standpipes remains ongoing until construction commences. Readings should also be taken after periods of heavy rainfall to determine the effect of prolonged precipitation on the groundwater table.

5.3 Infiltration

The field tests showed no fall, or little fall, in water level. It is likely, therefore, that design of a soakaway system will be impractical. It will, therefore, be necessary to discharge storm water to an existing surface water system, using attenuation techniques to regulate the flow.

5.4 Chemical Attack on Buried Concrete

The results of Sulphate and pH testing showed very low Sulphate (maximum of 0.047 g/l SO₄and near-neutral pH levels (8.8 to 9.20).

With reference to Table C1 of BRE Special Digest 1: 2005, the level of Sulphate suggests a design Sulphate Class of DS-1. Assuming a static groundwater table, an ACEC (Aggressive Chemical Environment for Concrete) Classification of AC-1s is applicable, since the pH levels are greater than 5.5.

In terms of concrete to I.S. EN 206-1:2013, the chemical testing demonstrates that concrete could be manufactured to Class XA1.

5.5 Disposal of Excavated Soils to Landfill

The results of the RILTA Suite have been used by O'Callaghan Moran to carry out a full Waste Characterisation Assessment (WCA) of any soils destined for landfill. This assessment determines whether or not the soils are hazardous in advance of being dispatched to landfill.

The WCA also provides recommendations as to the appropriate waste receptors (landfills) for the tested soils.

Report No. 24013 12 | P a g e

Appendix 1 Borehole Records

Report No. 24013 13 | P a g e

REPORT NUMBER

24013

BOREHOLE NO. BH01 CONTRACT Fortfield Road Terenure Dublin 6 SHEET Sheet 1 of 1 Dando 2000 **RIG TYPE CO-ORDINATES** 713,282.32 E DATE COMMENCED 14/04/2022 **BOREHOLE DIAMETER (mm)** 729,796.37 N 200 **DATE COMPLETED** 14/04/2022 **GROUND LEVEL (m AOD)** 47.46 **BOREHOLE DEPTH (m)** 6.10 SPT HAMMER REF. NO. W.Cahill CLIENT **BORFD BY** Lioncor **ENERGY RATIO (%) ENGINEER PROCESSED BY** Punch C.E F.C Samples Standpipe Details (E \mathbb{E} Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 Soft to firm dark brown sandy SILT/CLAY with X0 occasional fine gravel 0 AA175560 1.00 (2, 3, 3, 2, 3, 3)-X0 N = 7 (3, 3, 2, 2, 1, 2) AA175561 В 2.00 2 _____ . . . 44.96 2.50 Stiff dark brown sandy gravelly CLAY -XO ____ N = 16AA175562 3 В 3.00 (4, 4, 3, 4, 5, 4) -X-43.86 3.60 Medium dense to dense grey/black fine to coarse sandy silty/clayey GRAVEL AA175563 N = 30 (4, 5, 5, 7, 8, 10) В 4.00 N = 28 (5, 6, 6, 6, 7, 9) AA175564 В 5.00 -5 0 0 0 0000 41.36 N = 50/150 mm6.10 F 6 (7, 8, 17, 33) Obstruction End of Borehole at 6.10 m 8 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Time From (m) To (m) Comments Comments Strike Depth То (h) Αt (min) 4.8 4.5 1 IGSL.GDT 1/6/22 No water strike 1.5 6.1 6 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** GPJ Comments Date Depth Depth Date Tip Depth RZ Top RZ Base Туре 24101. LOG REMARKS 1hr Erecting Covid 19 Dafe Working Area . CAT scanned Sample Legend ВН D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Samp location and hand dug inspection pit were carried out . Sample P - Undisturbed Piston Sample IGSL tal Sample (Jar + Vial + Tub) W - Water Sample

REPORT NUMBER

24013

BOREHOLE NO. BH02 CONTRACT Fortfield Road, Terenure, Dublin 6 SHEET Sheet 1 of 1 Dando 2000 **RIG TYPE CO-ORDINATES** 713,311.17 E DATE COMMENCED 13/04/2022 **BOREHOLE DIAMETER (mm)** 200 729,739.05 N **DATE COMPLETED** 13/04/2022 **GROUND LEVEL (m AOD)** 48.11 **BOREHOLE DEPTH (m)** 4.20 SPT HAMMER REF. NO. W.Cahill CLIENT **BORFD BY** Lioncor **ENERGY RATIO (%) ENGINEER PROCESSED BY** Punch C.E F.C Samples Standpipe Details (E \mathbb{E} Elevation Ref. Number Recovery Sample Field Test Legend Depth (Depth (Description Depth (m) Results - 0 Soft dark brown sandy SILT/CLAY 47.31 0.80 Firm dark brown/grey sandy SILT/CLAY with -XO N = 10AA175549 1.00 occasional gravel (2, 2, 3, 2, 3, 2)· O -46.61 1.50 Stiff dark brown/grey sandy gravelly CLAY ō N = 31 (4, 6, 6, 8, 8, 9) AA175550 В 2.00 2 ō N = 33AA175551 -3 ō В 3.00 (5, 6, 6, 7, 9, 11) 44.61 3.50 Stiff to very stiff black sandy gravelly silty CLAY with <u>~</u> occasional cobbles and small boulders N = 50/150 mm (10, 15, 24, 26) В 4.00 AA175552 43.91 4.20 Obstruction End of Borehole at 4.20 m -5 6 8 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Time To (m) Comments From (m) Comments (h) Strike Depth At То (min) 2.2 2.6 1 IGSL.GDT 1/6/22 No water strike 1.5 42 4 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** GPJ Comments Date Depth Depth Date Tip Depth RZ Top RZ Base Туре 24101. LOG REMARKS 1hr Erecting Covid 19 Dafe Working Area . CAT scanned Sample Legend ВН D - Small Disturbed (tub) B - Bulk Disturbed LB - Large Bulk Disturbed Env - Environmental Samp location and hand dug inspection pit were carried out . Sample P - Undisturbed Piston Sample IGSL tal Sample (Jar + Vial + Tub) W - Water Sample

IGSL.GDT 1/6/22

GPJ

BH LOG

IGSL

GEOTECHNICAL BORING RECORD

REPORT NUMBER

24013

BOREHOLE NO. BH03 CONTRACT Fortfield Road, Terenure, Dublin 6 SHEET Sheet 1 of 1 Dando 2000 **RIG TYPE CO-ORDINATES** 713,341.17 E DATE COMMENCED 13/04/2022 **BOREHOLE DIAMETER (mm)** 200 729,824.72 N **DATE COMPLETED** 13/04/2022 **GROUND LEVEL (m AOD)** 47.26 **BOREHOLE DEPTH (m)** 4.00 SPT HAMMER REF. NO. CLIENT **BORED BY** W.Cahill Lioncor **ENERGY RATIO (%) ENGINEER PROCESSED BY** Punch C.E F.C Samples Standpipe Details (E \mathbb{E} Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 Soft dark brown sandy SILT/CLAY with occasional -X0 gravel N = 6AA175553 1.00 (1, 2, 1, 2, 2, 1) -XO N = 7 (2, 2, 1, 2, 2, 2) AA175554 В 2.00 2 _____ <u>.</u> 44.76 2.50 Stiff to very stiff dark brown sandy silty gravelly CLAY $\overline{\otimes}$ with occasional cobbles and small boulders 0_ N = 35 (4, 9, 11, 11, 1, 12) AA175555 -3 В 3.00 N = 50/150 mm (22, 3, 39, 11) AA175556 В 4.00 4 N = 33 (8, 7, 6, 7, 10, 10) AA175557 В 5.00 -5 41.36 5.90 N = 52/75 mm Obstruction (25, 52)F 6 End of Borehole at 4.00 m 8 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Water Casing Sealed Time Time From (m) To (m) Comments Comments (h) Strike Depth At То (min) 3.8 1 No water strike 5.9 1.5 5.7 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Date Tip Depth RZ Top RZ Base Туре 24101. REMARKS 1hr Erecting Covid 19 Dafe Working Area . CAT scanned Sample Legend D - Small Disturbed (tub) B - Bulk Disturbed LB - Large Bulk Disturbed Env - Environmental Samp location and hand dug inspection pit were carried out . Sample P - Undisturbed Piston Sample tal Sample (Jar + Vial + Tub) W - Water Sample

REPORT NUMBER

24013

BOREHOLE NO. BH04 CONTRACT Fortfield Road, Terenure, Dublin 6 SHEET Sheet 1 of 1 Dando 2000 **RIG TYPE CO-ORDINATES** 713,379.39 E DATE COMMENCED 14/04/2022 **BOREHOLE DIAMETER (mm)** 729,771.58 N 200 **DATE COMPLETED** 14/04/2022 **GROUND LEVEL (m AOD)** 47.71 **BOREHOLE DEPTH (m)** 5.80 SPT HAMMER REF. NO. W.Cahill CLIENT **BORFD BY** Lioncor **ENERGY RATIO (%) ENGINEER PROCESSED BY** Punch C.E F.C Samples Standpipe Details (E \mathbb{E} Elevation Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results - 0 Dark brown sandy SILT/CLAY 47.21 0.50 Soft light brown sandy SILT/CLAY with occasional X gravel X AA175565 1.00 N = 7(2, 2, 2, 1, 2, 2) 0. 8 N = 7 (1, 2, 2, 1, 2, 2) AA175566 В 2.00 2 XO 45.21 2.50 Stiff dark brown sandy gravelly silty CLAY with $\overline{\otimes}$ occasional cobbles N = 20-3 AA175567 В 3.00 (3, 4, 4, 5, 5, 6) N = 49 (8, 10, 10, 11, 13, 15) AA175568 В 4.00 4 43.51 4.20 Stiff to very stiff black very gravelly sandy CLAY with some cobbles and occasional small boulders N = 50/150 mm (10, 17, 23, 27) AA175569 В 5.00 -5 41.91 5.80 N = 250/75 mm Obstruction (25, 250)F 6 End of Borehole at 5.80 m 8 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Time Water Casing Sealed Time To (m) Comments From (m) Comments Strike Depth То (h) Αt (min) 4.8 1 1/6/22 No water strike 1.5 56 5.8 GDT. IGSL. **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** GPJ Comments Date Depth Depth Tip Depth RZ Top RZ Base Туре 24101. LOG REMARKS 1hr Erecting Covid 19 Dafe Working Area . CAT scanned Sample Legend ВН D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Samp location and hand dug inspection pit were carried out . Sample P - Undisturbed Piston Sample IGSL tal Sample (Jar + Vial + Tub) W - Water Sample

REPORT NUMBER

24013

BOREHOLE NO. BH05 CONTRACT Fortfield Road, Terenure, Dublin 6 SHEET Sheet 1 of 1 Dando 2000 **RIG TYPE CO-ORDINATES** 713,395.71 E DATE COMMENCED 19/04/2022 BOREHOLE DIAMETER (mm) 729,859.58 N 200 DATE COMPLETED 19/04/2022 **GROUND LEVEL (m AOD)** 47.05 **BOREHOLE DEPTH (m)** 5.30 SPT HAMMER REF. NO. W.Cahill CLIENT **BORFD BY** Lioncor **ENERGY RATIO (%) ENGINEER PROCESSED BY** Punch C.E F.C Samples Standpipe Details (E \mathbb{E} Elevation Ref. Number Recovery Sample Field Test Legend Depth (Depth (Description Depth (m) Results - 0 TOPSOIL 71.17 0.20 46.85 Mottled brown sandy SILT/CLAY with occasional -X0 X 46.25 0.80 Soft to firm dark brown sandy SILT/CLAY with some AA175570 1.00 gravel and occasional cobbles (2, 2, 1, 1, 2, 1) N = 10 (2, 2, 3, 2, 2, 3) AA175571 В 2.00 2 44.55 2.50 Stiff dark brown sandy gravelly silty CLAY with occasional cobbles AA175572 3 В 3.00 (3, 3, 4, 4, 5, 6) 43.25 3.80 Very stiff grey/black sandy very gravelly CLAY with N = 44/75 mm (23, 2, 44) AA175573 В 4.00 4 some cobbles and occasional small bouldersa N = 40 (5, 6, 8, 11, 9, 12) AA175574 В 5.00 5 41.75 5.30 Obstruction End of Borehole at 5.30 m 6 8 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Casing Water Sealed Time Time To (m) Comments Comments From (m) (h) Strike Depth At То (min) 4.1 3.90 3.00 Slow 3.9 3.60 3.60 20 1 1/6/22 5.3 1.5 52 GDT , IGSL. **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** GPJ Comments Date Depth Depth Tip Depth RZ Top RZ Base Туре 24101. LOG REMARKS 1hr Erecting Covid 19 Dafe Working Area . CAT scanned Sample Legend ВН D - Small Disturbed (tub) B - Bulk Disturbed LB - Large Bulk Disturbed Env - Environmental Samp location and hand dug inspection pit were carried out . Sample P - Undisturbed Piston Sample IGSL tal Sample (Jar + Vial + Tub) W - Water Sample

REPORT NUMBER

24013

BOREHOLE NO. **BH06** CONTRACT Fortfield Road Terenure Dublin 6 SHEET Sheet 1 of 1 **RIG TYPE** Dando 2000 **CO-ORDINATES** 713,413.31 E DATE COMMENCED 19/04/2022 BOREHOLE DIAMETER (mm) 729,808.88 N 200 DATE COMPLETED 19/04/2022 **GROUND LEVEL (m AOD)** 47.49 **BOREHOLE DEPTH (m)** 6.40 SPT HAMMER REF. NO. W.Cahill CLIENT **BORFD BY** Lioncor **ENERGY RATIO (%) ENGINEER PROCESSED BY** Punch C.E F.C Samples Standpipe Details (E \mathbb{E} Elevation Ref. Number Recovery Sample Field Test Legend Depth (Description Depth Depth (m) Results - 0 TOPSOIL 7117. 711 47.19 0.30 Light brown sandy SILT/CLAY with occasional fine X 46.79 0.70 gravel Firm dark brown sandy SILT/CLAY with some gravel <u>~</u> N = 12and occasional cobbles AA171709 1.00 (2, 2, 3, 2, 3, 4)<u>45.</u>99 1.50 Stiff dark brown sandy gravelly silty CLAY with $\overline{\otimes}$ occasional cobbles N = 24 (4, 3, 5, 6, 6, 7) AA171710 В 2.00 2 N = 32AA171711 -3 В 3.00 (8, 7, 5, 8, 10, 9) 44.09 3.40 Stiff to very stiff dark brown sandy silty gravelly CLAY $\overline{\otimes}$ with occasional cobbles 0 AA171712 N = 40 (10, 14, 11, 11, 8, 10) В 4.00 4 42.99 4.50 Very stiff to hard grey/black sandy gravelly CLAY with some cobbles and occasional small boulders N = 75 (10, 17, 18, 21, 11, 25) AA171713 В 5.00 -5 N = 75/225 mmAA171714 В 6.00 6 (16, 17, 32, 18, 25) 41.09 6.40 Obstruction End of Borehole at 6.40 m 8 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Water Casing Sealed Time Time Comments From (m) To (m) Comments Strike Depth То (h) Αt (min) 3.8 3.6 0.5 1/6/22 No water strike 43 4.5 1 6.4 1.5 6.2 GDT , IGSL. **GROUNDWATER PROGRESS** Depth to Hole Casing **INSTALLATION DETAILS** Comments GPJ Date Depth Depth Date Tip Depth RZ Top RZ Base Туре 24101. LOG REMARKS 1hr Erecting Covid 19 Dafe Working Area . CAT scanned Sample Legend ВН D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Samp location and hand dug inspection pit were carried out . Sample P - Undisturbed Piston Sample IGSL al Sample (Jar + Vial + Tub) W - Water Sample

Appendix 2 Rotary Corehole Records

Report No. 24013 14 | P a g e

RC01 Box 1 of 2 - 11.00-14.00m

RC01 Box 2 of 2 - 14.00-14.50m

RC02 Box 1 of 1 – 8.00-11.00m

RC03 Box 1 of 2 - 7.50-10.50m

RC03 Box 2 of 2 - 10.50-12.50m

RC04 Box 1 of 2 - 7.50-10.50m

RC04 Box 2 of 2 – 10.50-13.50m

RC05 Box 1 of 2 - 9.00-12.00m

RC05 Box 2 of 2 - 12.00-14.00m

RC06 Box 1 of 2 - 9.00-12.00m

RC06 Box 2 of 2 - 12.00-14.00m

Appendix 3 Trial Pit Records

Report No. 24013 15 | P a g e

REPORT NUMBER

24013

CON	TRACT	Fortfield Road, Terenure, [Oublin 6					TRIAL P SHEET	IT NO.	TP0 Shee) 1 et 1 of 1	
LOG	GED BY	I.Reder	CO-ORDINAT		729,8	07.94 E 45.19 N		DATE ST	TARTED		4/2022 4/2022	
CLIE	NT INEER	Lioncor Punch C.E	GROUND LE	VEL (m)	47.18			EXCAVA METHOI		JCB		
									Samples		(a)	meter
		Geotechnical Descr	iption	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0 - -	TOPSO			1/ 1/1/ 1/1/	0.30	46.88						
- - - - - -		irm, brown, slightly sandy slig						AA163096	В	0.70		
- - - -	Firm gre high sub content	eyish brown, slightly sandy gr pangular to subrounded cobb	avelly CLAY with bles and boulders		1.10	46.08		AA163097	В	1.70		
2.0	with high	stiff, greyish brown, slightly s h subangular to subrounded s content	andy gravelly CLAY cobbles and low		2.40	44.78	(Seepage)					
3.0	End of 1	Frial Pit at 3.00m			3.00	44.18		AA163098	В	2.70		
- - - -												
- 4.0 - -												
-												
Seep	page flow	Conditions at 2.1m										
Stab TP st	ility table											
Gene	eral Rema	rks										
Stab TP si												

REPORT NUMBER

24013

CO-ORDINATES 713,364,94 E 729,870,23 N CO-ORDINATES 729,870,23 N CO-O	CON	ITRACT	Fortfield Road, Terenure, D	ublin 6					TRIAL P	IT NO.	TP0		
Columbia	LOG	GED BY	I.Reder			729,8	70.23 N		DATE S		14/0	4/2022	
Geotechnical Description TOPSOIL Soft to firm, brown, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content Suffit to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content Soft to firm, brown, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content Suffit to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders and boulders content Suffit to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders and boulders content Geoundwater Conditions Geoundwater Conditions Geoundwater Conditions				GROUND	LEVEL (m)	46.97					JCB		
TOPSOIL Soft to firm, brown, slightly sandu slightly gravelly CLAY Firm, greyish brown, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content Stiff to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content 30 End of Trial Pit at 3.00m AA163100 B 2.00 AA163100 B 2.00 AA163100 B 3.00 AA173101 B 3.00 Groundwater Conditions										Samples		,a)	meter
Soft to firm, brown, slightly sandu slightly gravelly CLAY with high subangular to subrounded cobbles and boulders content 2.0 Stiff to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content 3.0 End of Trial Pit at 3.00m Groundwater Conditions Groundwater Conditions Groundwater Conditions Groundwater Conditions			Geotechnical Descri	ption		Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KF	Hand Penetrometer (KPa)
Soft to firm, brown, slightly sandu slightly gravelly CLAY with high subangular to subrounded cobbles and boulders content Stiff to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content 3.0 End of Trial Pit at 3.00m Groundwater Conditions Groundwater Conditions Groundwater Conditions A6.57 46.27 47.40 48.47 48.4	0.0	TOPSO	IL		1/ 1/1/								
Limm, greysh brown, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content 2.0 Stiff to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content 3.0 End of Trial Pit at 3.00m AA163100 B 2.00 AA163100 B 2.00 AA163100 B 3.00 AA17310 B 3.00 Groundwater Conditions	-	Soft to f	irm, brown, slightly sandu slig	htly gravelly CLAY		0.40	46.57						
2.0 Content 2.0 Stiff to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content 3.0 End of Trial Pit at 3.00m AA163100 B 2.00 AA163100 B 2.00 AA163100 B 3.00 AA17310 B 3.00 Groundwater Conditions	-	Firm, gr	eyish brown, slightly sandy go bangular to subrounded cobb	ravelly CLAY with les and boulders		0.70	46.27						
Stiff to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content 3.0 End of Trial Pit at 3.00m Groundwater Conditions TP dry	1.0	content	ŭ						AA163099) В	1.00		
Stiff to very stiff, grey, slightly sandy gravelly CLAY with high subangular to subrounded cobbles and boulders content 3.0 End of Trial Pit at 3.00m AA173101 B 3.00 Groundwater Conditions TP dry	2.0								AA163100) B	2.00		
Groundwater Conditions TP dry	- - - -	high sul	pangular to subrounded cobb	gravelly CLAY with les and boulders									
Groundwater Conditions TD dry	3.0	End of	Frial Pit at 3.00m			3.00	43.97		AA173101	В	3.00		
Groundwater Conditions TD dry	-												
TD dny	4.0												
TP dry	-												
Stability TP stable	TD 6		Conditions										
Tensing Stability TP stable	Ct :	-1114											
	TP s												
General Remarks	Gen	eral Rema	rks										

REPORT NUMBER

24013

							SHEET		Shee	et 1 of 1	
.ogc	GED BY I.Reder	CO-ORDINAT	ES	713,38 729,82	35.67 E 26.60 N		DATE ST			4/2022 4/2022	
LIEN	NT Lioncor NEER Punch C.E	GROUND LEV	/EL (m)	47.28			EXCAVA' METHOD		JCB		
							5	Samples		a)	neter
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSOIL		1/ 1/ 1/ 1/								
	Firm, brown, slightly sandy slightly gravelly (CLAY	<u> </u>	0.30	46.98						
1.0	Firm greyish brown, slightly sandy gravelly C high subangular to subrounded cobbles con	CLAY with tent		0.50	46.78		AA173103	В	0.80		
	Firm to stiff, greyish brown, slightly sandy gr with high subangular to subrounded cobbles content	avelly CLAY s and boulders		1.50	45.78		AA173104	В	1.80		
2.0	TD towningted due to many hig houldon			2.40	44.88						
	TP terminated due to many big boulders End of Trial Pit at 2.40m										
3.0											
4.0											
Frou l P dr	ndwater Conditions Y								1	•	
Stabi P sta	lity able										
ene P te	rral Remarks rminated at 2.4m due to big boulders										

REPORT NUMBER

24013

CO-ORDINATES CO-O	CON	TRACT	Fortfield Road, Teren	ure, Dublin 6						TRIAL P	IT NO.	TP0		
AA173106 B 0.50 Firm, prown, slightly sandy slightly gravelly CLAY with high subangular to subrounded cobbles and medium boulders content Groundwater Conditions Scepage from at 2,0m; slow water flow at 2,8m Stability TP unstable from 2,0m		OFF 511			CO-ORDINAT	ES					TARTED			
CLIENT Punch C.E Geotechnical Description AA173108 B 0.50 AA173107 B 1.50 AA173107 B 1.50 AA173107 B 1.50 AA173108 B 2.50 Geotechnical Description Geotechnical Description AA173108 B 2.50 AA173108 B 2.50 Geotechnical Description AA173108 B 2.50 AA173108 B 2.50 AA173108 B 2.50 AA173108 B 2.50 Geotechnical Description AA173107 B 1.50 AA173108 B 2.50 Geotechnical Description AA173108 B 2.50 A	LOG	GED BY	I.Reder		CDOUND LE	/FI (***)								
TOPSOIL Firm, brown, slightly sandy slightly CLAY with high subangular cobbles low boulders and sandy gravel lenses content 2.0 Firm to stiff greyish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 3.0 End of Trial Pit at 3.00m Groundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m					GROUND LE	VEL (M)						JCB		
TOPSOIL Firm, brown, slightly sandy slightly CLAY with high subangular cobbles low boulders and sandy gravel lenses content 20 Firm to stiff grayish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 20 Firm to stiff grayish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 30 End of Trial Pit at 3.00m Groundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m											Samples		a)	neter
Firm, brown, slightly sandy slightly gravelly CLAY Firm, greyish brown, slightly sandy very gravelly CLAY with high subangular cobbles low boulders and sandy gravel lenses content 2.00 Firm to stiff greyish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 3.00 Firm to firm to stiff greyish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 3.00 Firm to stiff greyish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium 3.00 Forundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m			Geotechnical D	Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KP	Hand Penetrometer (KPa)
Firm, prown, slightly sandy very gravelly CLAY with high subangular cobbles low boulders and sandy gravel lenses content 20 Firm to stiff greyish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 20 Firm to stiff greyish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 30 End of Trial Pit at 3.00m Groundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m	0.0	TOPSO	DIL			1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1								
Firm, greyish brown, slightly sandy very gravelly CLAY with high subangular cobbles low boulders and sandy gravel lenses content 2.0 Firm to stiff greyish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 3.0 End of Trial Pit at 3.00m Groundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m		Firm, br	rown, slightly sandy sligh	ntly gravelly C	CLAY		0.30			AA173106	В	0.50		
Firm to stiff greyish brown, sandy very gravelly CLAY with high subangular to subrounded cobbles and medium boulders content 30 End of Trial Pit at 3.00m Groundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m	1.0	Firm, gr with high gravel le	reyish brown, slightly sar h subangular cobbles lo enses content	ndy very grav w boulders a	relly CLAY and sandy		0.70							
AA173108 B 2.50 End of Trial Pit at 3.00m Groundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m	2.0	Firm to s	stiff greyish brown, sanc bangular to subrounded	dy very grave cobbles and	lly CLAY with medium		2.00		↓	AA173107	В	1.50		
Groundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m		boulders	s content				2.00			AA173108	В	2.50		
Groundwater Conditions Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m	3.0	End of 1	Trial Pit at 3.00m				3.00							
Seepage flow at 2.0m; slow water flow at 2.8m Stability TP unstable from 2.0m	4.0													
Stability TP unstable from 2.0m	Grou	undwater (Conditions											
TP unstable from 2.0m	Seep	page flow	at 2.0m; slow water flow	v at 2.8m										
General Remarks	Stab TP u	ility Instable fro	om 2.0m											
	Gen	eral Rema	arks											
			-											

Appendix 4 Infiltration Test Results

Report No. 24013 16 | P a g e

f -value from field tests Soakaway Design **IGSL** Contract: Fortfield Road, terenure, Dublin Contract No. Test No. SA1 **Engineer PUNCH** Date: 14/04/2022 Summary of ground conditions Ground water Description 0.00 0.30 TOPSOIL Soft to firm, brown, slightly sandy slightly gravelly CLAY 0.30 0.80 Firm to stiff, greyish brown, slightly sandy gravelly CLAY with some 0.80 DRY 1.50 subangular cobbles Notes: Sample taken at 1.0m Ref.No AA163095 Field Data Field Test Depth of Pit (D) Depth to Elapsed 1.50 m Width of Pit (B) Water 0.50 Time m Length of Pit (L) 2.00 (m) (min) m 0.800 0.00 Initial depth to Water = 0.80 m 0.800 1.00 Final depth to water = 0.80 m 0.800 2.00 Elapsed time (mins)= 60.00 0.800 3.00 0.800 4.00 Top of permeable soil m 5.00 Base of permeable soil 0.800 m 0.800 6.00 No Water Movement 7.00 0.800 8.00 0.800 9.00 0.800 10.00 0.800 Base area= m2 0.800 12.00 *Av. side area of permeable stratum over test period= 3.5 m2 0.800 14.00 Total Exposed area = 4.5 m2 0.800 16.00 18.00 0.800 0.800 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.800 25.00 0 m/min 0.800 30.00 f= or 0 m/sec 0.800 40.00 0.800 50.00 0.800 Depth of water vs Elapsed Time (mins) 70.00 60.00 Elapsed Time(mins) 50.00 40.00 30.00 20.00 10.00 0.00 0.000 0.200 0.400 0.600 0.800 1.000 Depth to Water (m)

f -value from field tests Soakaway Design IGSL Contract: Fortfield Road, terenure, Dublin Contract No. Test No. SA2 **Engineer PUNCH** Date: 14/04/2022 Summary of ground conditions Description Ground water 0.00 0.30 TOPSOIL 0.30 0.70 Firm, brown, sandy gravelly CLAY Moderate water at 0.70 1.50 Dense, grey, slightly clayey sandy fine to coarse GRAVEL (very wet) 1.35m Notes: Sample taken at 1.0m Ref.No AA173102 Field Data Field Test Depth of Pit (D) Depth to Elapsed 1.50 m Width of Pit (B) 0.50 Water Time m Length of Pit (L) 2.00 (min) m (m) 0.790 0.00 Initial depth to Water = 0.79 m 0.790 1.00 Final depth to water = 0.825 m 0.790 2.00 Elapsed time (mins)= 90.00 0.795 3.00 0.795 4.00 Top of permeable soil m 0.795 5.00 Base of permeable soil m 0.797 6.00 0.797 7.00 0.797 8.00 0.797 9.00 10.00 0.800 Base area= m2 *Av. side area of permeable stratum over test period= 0.802 12.00 3.4625 m2 14.00 0.804 Total Exposed area = 4.4625 m2 0.806 16.00 18.00 0.808 0.810 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.812 25.00 8.7E-05 m/min 1.45243E-06 m/sec 0.815 30.00 or 0.817 40.00 0.819 50.00 0.821 60.00 0.823 70.00 0.824 80.00 0.825 90.00 Depth of water vs Elapsed Time (mins) 100.00 90.00 80.00 Elapsed Time(mins) 70.00 60.00 50.00 40.00 30.00 ٠ 20.00

10.00

0.785

0.790

0.795

0.800

0.805

Depth to Water (m)

0.810

0.815

0.820

0.825

0.830

f -value from field tests Soakaway Design **IGSL** Contract: Fortfield Road, terenure, Dublin Contract No. Test No. SA3 **Engineer PUNCH** Date: 14/04/2022 Summary of ground conditions Ground water Description 0.25 0.00 TOPSOIL 0.25 0.50 MADE GROUND (grey sandy gravelly clay, red brick pieces, cobbles) 0.50 0.70 Dry Firm, brown, slightly sandy slightly gravelly CLAY Firm to stiff, greyish brown, slightly sandy gravelly CLAY with many 0.70 1.50 subangular cobbles Notes: Sample taken at 1.0m Ref.No AA173109 Field Data Field Test Depth of Pit (D) Depth to Elapsed 1.50 m Width of Pit (B) Water 0.50 Time m Length of Pit (L) 2.00 (m) (min) m 0.800 0.00 Initial depth to Water = 0.80 m 0.800 1.00 Final depth to water = 0.80 m 0.800 2.00 Elapsed time (mins)= 60.00 0.800 3.00 0.800 4.00 Top of permeable soil m 5.00 Base of permeable soil 0.800 m 0.800 6.00 No Water movement 7.00 0.800 8.00 0.800 9.00 0.800 10.00 0.800 Base area= m2 0.800 12.00 *Av. side area of permeable stratum over test period= 3.5 m2 0.800 14.00 Total Exposed area = 4.5 m2 0.800 16.00 0.800 18.00 0.800 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 0.800 25.00 0 m/min 0.800 30.00 f= or 0 m/sec 0.800 40.00 0.800 50.00 0.800 Depth of water vs Elapsed Time (mins) 70.00 60.00 Elapsed Time(mins) 50.00 40.00 30.00 20.00 10.00 0.00 0.000 0.200 0.400 0.600 0.800 1.000 Depth to Water (m)

f -value from field tests Soakaway Design IGSL Contract: Fortfield Road, terenure, Dublin Contract No. Test No. SA4 **Engineer PUNCH** Date: 14/04/2022 Summary of ground conditions Ground water Description 0.00 0.35 TOPSOIL 0.35 0.50 Firm, brown, slightly sandy slightly gravelly CLAY Dry 0.50 0.80 Firm, greyish brown, sandy gravelly CLAY with occasional cobbles and sandy gravel lenses Fimr to stiff, greyish brown, sandy gravelly CLAY with cobbles 0.80 1.50 Notes: Sample taken at 1.0m Ref.No AA173105 Field Data Field Test Depth of Pit (D) Depth to Elapsed 1.50 m Width of Pit (B) 0.50 Water Time m Length of Pit (L) 2.00 (m) (min) m 0.840 0.00 Initial depth to Water = 0.84 m 0.840 1.00 Final depth to water = 0.845 m 0.840 2.00 Elapsed time (mins)= 60.00 0.840 3.00 0.840 4.00 Top of permeable soil m 5.00 Base of permeable soil 0.840 m 0.840 6.00 Water movement stop at 0.845m 0.840 7.00 0.845 8.00 9.00 0.845 0.845 10.00 Base area= m2 0.845 12.00 *Av. side area of permeable stratum over test period= 3.2875 m2 14.00 0.845 Total Exposed area = 4.2875 m2 0.845 16.00 18.00 0.845 0.845 20.00 Infiltration rate (f) = Volume of water used/unit exposed area / unit time 25.00 0.845 1.9E-05 m/min 3.23939E-07 m/sec 0.845 30.00 or 0.845 40.00 0.845 50.00 0.845 Depth of water vs Elapsed Time (mins) 70.00 60.00 Elapsed Time(mins) 50.00 40.00 30.00 20.00 10.00

0.00

0.840

0.841

0.842

Depth to Water (m)

0.843

0.844

0.845

0.846

Appendix 5 Ground Water Monitoring

Report No. 24013 17 | P a g e

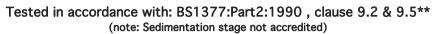
Standpipe	Standpipe Depth	Depth to water (n	n bgl)
-	(m bgl)	27/04/2022	09/05/2022
BH/RC 01	14.5	1.7	1.9
BH/RC02	8.0	2.1	2.1
BH/RC05	9.0	1.3	1.2
BH/RC06	14.0	2.2	2.0

Report No. 24013 18 | P a g e

Appendix 6 Laboratory Test Results (Geotechnical)

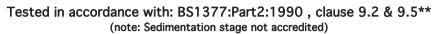
Report No. 24013 19 | P a g e

IGSL Ltd Materials Laboratory Unit J5, M7 Business Park Newhall, Naas Co. Kildare

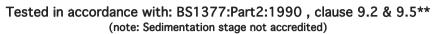

Test Report

Determination of Moisture Content, Liquid & Plastic Limits

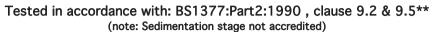
Newhall, Naa Co. Kildare 045 846176	as			Tested in accordance with BS1377:Part 2:1990, clauses 3.2, 4.3, 4.4 & 5.3**										TESTING DETAILED IN SCOPE REG NO. 1331
	Report No.	R133964		Contract	No.	24013		Contract N	Name:	Fortfield F	Road , Tere	nure , Dub	olin 6	
	Customer	Punch C.E												
	Samples Re	eceived:	03/05/22	Date Tes	sted:	Various								
BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425μm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description	
BH01	AA175561	2.0	A22/2475	В	12	31	17	14	47	WS	4.4	CL	Brown sandy gravelly CLAY	
BH01	AA175564	5.0	A22/2476	В	8.7		NP	NP		WS	4.4		Brown silty, sandy, GF	AVEL
BH02	AA175551	3.0	A22/2477	В	12	30	16	14	45	WS	4.4	CL	Brown sandy gravelly	CLAY
BH03	AA175554	2.0	A22/2479	В	12	37	18	19	46	WS	4.4	СІ	Brown sandy gravelly	CLAY
BH03	AA175556	4.0	A22/2480	В	8.1	31	17	14	38	WS	4.4	CL	Brown clayey, very sandy, GRA	VEL with many cobbles
BH04	AA175567	3.0	A22/2481	В	12	34	16	18	73	WS	4.4	CL	Brown sandy gravelly	CLAY
BH04	AA175569	5.0	A22/2482	В	13	36	16	20	55	WS	4.4	СІ	Brown sandy gravelly	CLAY
BH05	AA175572	3.0	A22/2483	В	14	34	15	19	49	WS	4.4	CL	Grey sandy gravelly C	LAY
BH05	AA175574	5.0	A22/2484	В	11	31	14	17	55	WS	4.4	CL	Grey slightly sandy, gr	avelly, CLAY
BH06	AA171710	2.0	A22/2485	В	14	27	13	14	52	WS	4.4	CL	Brown sandy gravelly	CLAY
BH06	AA171713	5.0	A22/2486	В	10	29	13	16	52	WS	4.4	CL	Grey slightly sandy, gravelly, C	_AY with some cobbles
TP01	AA163098	2.7	A22/2487	В	11	31	14	17	53	WS	4.4	CL	Brown sandy gravelly	CLAY
TP02	AA173101	3.0	A22/2488	В	9.4	29	15	14	58	WS	4.4	CL	Brown slightly sandy, gravelly,	CLAY with some cobbles
TP04	AA173108	2.5	A22/2489	В	12	27	15	12	51	WS	4.4	CL	Brown sandy gravel C	LAY
	.	WS - Wet sieved AR - As received NP - Non plastic			Sample Type:	B - Bulk Distu U - Undisturb			-	ecimen tested,in			otherwise noted.	
	Liquid Limit	4.3 Cone Penetro	meter definitive	method				Opinions and	interpretations	are outside the	scope of accre	ditation. * den	otes Customer supplied	information.
	Clause:	4.4 Cone Penetro	meter one poin		·		This report sha	all not be repro	1 -		ten approval fi	rom the Laboratory.	I =	
10	.CI 1+4 ru	lotoriolo I o	horoto:::		Persons authorized to approve reports			ports Approved by			Date	Page		
IG	ISL LĪŪ IVI	laterials La	_	H Byrne (Laboratory Manager)					17/05/22	1 of 1				


Determination of Particle Size Distribution

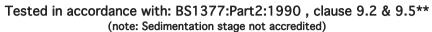
	particle % Contract No. 24013 Report No. R134012													
particle	%		Contract No.	24013	Report No.	R134012								
size	passing		Contract Nan	ne: Fortfield Ave	enue , Terenur	e , Dublin 6		Results relate only to the specir	nen tested in as received					
75	100	COBBLES	BH/TP*:	BH01				condition unless otherwise note	d. * denotes Customer					
63	100	COBBLES	Sample No.*	AA175564	Lab. Sample	e No.	A22/2476	supplied information. Opinions a	nd interpretations are					
50	100		Sample Type:	: В				outside the scope of accreditati	on.					
37.5	87		Depth* (m)	5.00	Customer:	Punch C.E		This report shall not be reprodu	ced except in full without					
28	77		Date Receive	d 03/05/2022	2 Date Testin	g started	11/05/2022	the written approval of the Labo	oratory.					
20	67		Description:	Brown silty,	sandy, GRAVE	EL								
14	59	GRAVEL												
10	49	GIVAVLL	Remarks	Note: **Clause 9.2 a	nd Clause 9.5 of BS13	77:Part 2:1990 have been s	superseded by ISO17892-4:2	Sample size did not meet the requirements of BS1377						
6.3	38					63	25 25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 35	5.					
5	34		100			0.063	0.3 0.425 0.6 1.18	2 3.35 6.3 10 20 20	250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
3.35	29		100											
2	21		90											
1.18	14		80					 						
0.6	9		§ 70 					 						
0.425	8	SAND	igg 60											
0.3	7		50											
0.15	6		40 tage											
0.063	6		Nercentage passing (%) 70 60 40 30											
			20					1						
		SILT/CLAY	10											
		0.21, 02, 11	0 1	0.001	0.01	0.1	1	10	100					
			0.0001	0.001	0.01	0.1	I	10	100					
				CLAY	SILT	Sieve size (mm)	SAND	<i>GRAVEL</i>						
						Approved by:		Date:	Page no:					
		IGSL L	td Materials Labora	atory		A Byen		18/05/22	1 of 1					


Determination of Particle Size Distribution

particle	%			Contract No.	24013	Report No.	R134013	}		
size	passing		•	Contract Name :	Fortfield Ave	nue , Terenui	re , Dublin 6		Results relate only to the speci	men tested in as received
75	100	COBBLES		BH/TP*:	BH02				condition unless otherwise note	ed. * denotes Customer
63	84	COBBLES		Sample No.*	AA175552	Lab. Sample	e No.	A22/2478	supplied information. Opinions a	and interpretations are
50	84			Sample Type:	В				outside the scope of accreditat	ion.
37.5	84			Depth* (m)	4.00	Customer:	Punch C.I	=	This report shall not be reprodu	iced except in full without
28	82			Date Received	03/05/2022	2 Date Testin	g started	11/05/2022	the written approval of the Lab	oratory.
20	77			Description:	Brown slightl	y sandy, grav	elly, SILT/C	LAY with some cobble	es	
14	72	GRAVEL								
10	66	GRAVLL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13	77:Part 2:1990 hav	e been superseded by ISO17892-4:2	2 Sample size did not meet the requirements of BS1377	
6.3	60						53	5 25 8 8	3. 35	7.
5	58						0.063	0.15 0.3 0.425 0.6	2 3.3.3 6.3 7 7 7 8 7 8 7 8	37.50
3.35	55		100 -							
2	50		90 -							
1.18	47		80 -							
0.6	42		%) bassing (%) 60 -							
0.425	40	SAND	isg 60 -							
0.3	38		<u>8</u> 50 -							
0.15	34		Percentage 0.5							
0.063	30		30 -					 		
0.037	25									
0.027	23		20 -							
0.017	20	SILT/CLAY	10 -							
0.010	18	SILT, CLAT	0 -					<u> </u>	1	
0.007	15		0.0	0.00)1	0.01	0.1	1	10	100
0.005	14				CLAY	SILT	Sieve size (mm) SAND	<i>GRAVEL</i>	
0.002	11									
		וכטו	td Mator	ials Laborator			Approved	-	Date:	Page no:
		IGSL L	tu Matel	iais Laburatur	у		AB	18/05/22 1 c		

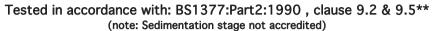

Determination of Particle Size Distribution

			(
particle	%			Contract No.	24013	Report No.	. R13401	1		
size	passing			Contract Name :	Fortfield Ave	nue , Tereni	ure , Dublin 6		Results relate only to the specia	men tested in as received
75	77	COBBLES		BH/TP*:	BH03				condition unless otherwise note	ed. * denotes Customer
63	77	COBBLEO		Sample No.*	AA175556	Lab. Samp	le No.	A22/2480	supplied information. Opinions a	and interpretations are
50	66			Sample Type:	В				outside the scope of accreditat	ion.
37.5	60			Depth* (m)	4.00	Customer:	Punch C.	E	This report shall not be reprodu	iced except in full without
28	59			Date Received	03/05/2022		•		the written approval of the Lab	oratory.
20	58			Description:	Brown clayey	/, very sandy	y, GRAVEL w	ith many cobbles		
14	55	GRAVEL								
10	53	UIVAVLL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS1	377:Part 2:1990 ha	ve been superseded by ISO17892-4	$^{\circ}2$ Sample size did not meet the requirements of BS1377	
6.3	49						63	0.15 0.3 .425 0.6	2 3.35 6.3 10 14	r.
5	47		100				0.063	0.15 0.3 0.425 0.6	2 3.3 5 6.3 10 10 20 20	37. 750 753 750
3.35	46		100 -							
2	42		90 -							
1.18	38		80 -							
0.6	32		<u>8</u> 70 -							
0.425	30	SAND	(%) bassing (%) 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.3	28		<u>8</u> 50 -							
0.15	24		96 ti 40 -							
0.063	19		e e							
			20 -							
		SILT/CLAY	10 -			+				
		SIL I / CLA I	0 -							
			0.0	0.00)1	0.01	0.1	1	10	100
					CLAY	SILT	Sieve size	(mm) SAND	GRAVEL	
							Approve	d by:	Date:	Page no:
		IGSL L	ials Laborator	У	18/05/22	1 of 1				


Determination of Particle Size Distribution

			`							
particle	%			Contract No.	24013	Report No.	R134015			
size	passing			Contract Name:	Fortfield Ave	nue , Terenu	re , Dublin 6		Results relate only to the specir	nen tested in as received
75	100	COBBLES		BH/TP*:	BH05				condition unless otherwise note	d. * denotes Customer
63	100	CODDLLS		Sample No.*	AA175574	Lab. Sample	e No.	A22/2484	supplied information. Opinions a	nd interpretations are
50	87			Sample Type:	В				outside the scope of accreditat	on.
37.5	82			Depth* (m)	5.00	Customer:	Punch C.E		This report shall not be reprodu	ced except in full without
28	75			Date Received	03/05/2022	2 Date Testin	g started	11/05/2022	the written approval of the Lab	oratory.
20	73			Description:	Grey slightly	sandy, grave	lly, CLAY			
14	68	GRAVEL								
10	65	GRAVEL		Remarks	Note: **Clause 9.2 an	nd Clause 9.5 of BS13	77:Part 2:1990 have been	superseded by ISO17892-4:2	Sample size did not meet the requirements of BS1377	
6.3	61						53	8 8		r.
5	60						0.063	0.3 0.425 0.6 1.18	2 3.35 6.3 10 10 20	37.5 37.5 53 53 53
3.35	56		100 -							
2	52		90 -							
1.18	49		80 -							
0.6	44		<u> </u>							
0.425	42	SAND	is 60 -							
0.3	40		Percentage passing (%) 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
0.15	36		1436 40							
0.063	33		cent							
0.038	27									
0.027	24		20 -							
0.017	21	SILT/CLAY	10 -							
0.010	18	SIL I / CLAT	0 -							
0.007	17		0.0	0.00	01	0.01	0.1	1	10	100
0.005	15				CLAY	SILT	Sieve size (mm) SAND	GRAVEL	
0.002	13									
		ICCL T	+4 14-+	iolo I obereter		<u> </u>	Approved by:		Date:	Page no:
		IGSL L	Lu mater	ials Laborator	У		A Byen	-	18/05/22	1 of 1

Determination of Particle Size Distribution


particle	%		Cont	tract No.	24013	Report No.	R134016			
size	passing		Cont	tract Name :	Fortfield Ave	nue , Terenur	e, Dublin 6		Results relate only to the spec	imen tested in as received
75	100	COBBLES	BH/	TP*:	BH06				condition unless otherwise not	ed. * denotes Customer
63	84	COBBLES	Sam	ple No.*	AA171713	Lab. Sample	No.	A22/2486	supplied information. Opinions	and interpretations are
50	84		Sam	ple Type:	В				outside the scope of accredita	tion.
37.5	76		Dept	th* (m)	5.00	Customer:	Punch C.E		This report shall not be reprod	uced except in full without
28	76		Date	e Received	03/05/2022	2 Date Testing	g started	11/05/2022	the written approval of the La	ooratory.
20	73		Desc	cription:	Grey slightly	sandy, gravel	lly, CLAY with s	ome cobbles		
14	70	CDAV/EL								
10	67	GRAVEL	Rem	arks	Note: **Clause 9.2 a	nd Clause 9.5 of BS137	77:Part 2:1990 have bee	n superseded by ISO17892-4:	2 Sample size did not meet the requirements of BS137	7
6.3	63						5 33	85	ιζ	τύ
5	61						0.063	0.3 0.425 0.6 1.18	2 3.35 5 6.3 10 14 20	28 23.7. 53.0.7.
3.35	59		100							
2	54		90							
1.18	51		80							
0.6	46		Percentage passing (%) 0							
0.425	44	SAND	is 60							
0.3	42		50						1	
0.15	38		age 10							
0.063	33		enta 40 ——							
0.037	30		ਨੂੰ 30 							
0.027	27		20							
0.017	23		10							
0.010	19	SILT/CLAY	0						<u> </u>	
0.007	16		0.0001	0.00	1	0.01	0.1	1	10	100
0.005	14				CLAY	SILT	Sieve size (mm) SAND	GRAVEL	
0.002	10						2.2.3.2.2	·, -· ··-	<u> </u>	
	-						Approved by	:	Date:	Page no:

IGSL Ltd Materials Laboratory

1 of 1

18/05/22

Determination of Particle Size Distribution

			`							
particle	%			Contract No.	24013	Report No.	R133965	5		
size	passing			Contract Name:	Fortfield Ave	enue , Terenu	ıre , Dublin 6		Results relate only to the speci	men tested in as received
75	100	COBBLES		BH/TP*:	TP02				condition unless otherwise note	ed. * denotes Customer
63	87	CODDLLS		Sample No.*	AA173101	Lab. Sampl	e No.	A22/2488	supplied information. Opinions a	and interpretations are
50	87			Sample Type:	В				outside the scope of accreditat	ion.
37.5	82			Depth* (m)	3.00	Customer:	Punch C.	E	This report shall not be reprodu	aced except in full without
28	79			Date Received	03/05/2022	2 Date Testir	ng started	03/05/2022	the written approval of the Lab	oratory.
20	75			Description:	Brown slight	ly sandy, gra	velly, CLAY v	with some cobbles		
14	71	GRAVEL								
10	67	GRAVLL		Remarks	Note: **Clause 9.2 ar	nd Clause 9.5 of BS13	377:Part 2:1990 hav	ve been superseded by ISO17892-4:	2 Sample size did not meet the requirements of BS1377	
6.3	63						53	5 25	35 35	ı.
5	61						0.063	0.15 0.3 0.425 0.6	2 3.3.3 6.3 7 7 7 7 8	237.1 53 7.1 7.5 7.5 7.5
3.35	57		100							
2	53		90							
1.18	50		80							
0.6	46		§ 70 ·							
0.425	44	SAND	(%) bassing (%) 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60							
0.3	41		50 bas							
0.15	37		Percentage 08							
0.063	34		cent							
0.037	30									
0.027	27		20							
0.017	24	SILT/CLAY	10		T					
0.010	21	SIL I / CLAT	0 -							
0.007	18		0.0	0.00)1	0.01	0.1	1	10	100
0.005	16				CLAY	SILT	Sieve size ((mm) SAND	<i>GRA VEL</i>	
0.002	12									
		ורכו ז	td Mata	cials I abaratar			Approved	•	Date:	Page no:
		IGSL L	Lu Mater	rials Laborator	y		AB	Jane	18/05/22	1 of 1

(Diametrial) POINT LOAD STRENGTH INDEX TEST DATA

Contract: Fortfield Road, Terenure, Dublin 6 Sample Type: Core Contract no. 24013

Date of test: 06/05/2022

Date of test:	00/03/202	22							
RC No.	Depth	D (Diameter)	P (failure load)	F	Is (index strength)	ls(50) (index	*UCS		
	m	mm	kN		Мра	strength) Mpa	MPa	Type	Orienation
RC01	11.10	78	30.0	1.222	4.93	6.02	120	d	//
	11.30	78	34.0	1.222	5.59	6.83	137	d	//
	11.90	78	28.0	1.222	4.60	5.62	112	d	//
	13.40	78	16.0	1.222	2.63	3.21	64	d	//
	14.10	78	10.0	1.222	1.64	2.01	40	d	//
RC02	8.30	78	21.0	1.222	3.45	4.22	84	d	//
	9.40	78	29.0	1.222	4.77	5.82	116	d	//
	9.55	78	24.0	1.222	3.94	4.82	96	d	//
	9.70	78	26.0	1.222	4.27	5.22	104	d	//
	9.90	78	30.0	1.222	4.93	6.02	120	d	//
RC03	8.00	78	8.0	1.222	1.31	1.61	32	d	//
	8.90	78	27.0	1.222	4.44	5.42	108	d	//
	9.30	78	30.0	1.222	4.93	6.02	120	d	//
	10.60	78	28.0	1.222	4.60	5.62	112	d	//
	11.90	78	29.0	1.222	4.77	5.82	116	d	//
RC04	8.40	78	24.0	1.222	3.94	4.82	96	d	//
	8.90	78	26.0	1.222	4.27	5.22	104	d	//
	9.40	78	28.0	1.222	4.60	5.62	112	d	//
	11.10	78	32.0	1.222	5.26	6.42	128	d	//
	11.20	78	36.0	1.222	5.92	7.23	145	d	//
	13.10	78	10.0	1.222	1.64	2.01	40	d	//
Sta	tistical Sumn	<u>l</u> nary Data	Is(50)	UCS*	*UCS Normal Distribution Curve				breviations
Number of Sa	amples Teste	ed	21	21	0.3			i	irregular
Minimum			1.61	32	0.25	<u> </u>		а	axial
Average			5.03	101	/			b	block
Maximum			7.23	145	0.2			d	diametral
Standard Dev	<i>/</i> .		1.57	0.15					
Upper 95% C	Confidence Li	mit	8.11 1.94	0.1				x. orientation	
Lower 95% C	Confidence Li	mit	38.88					planes of	
					0.05			weak	ness/bedding
Comments:					0			U	unknown
*UCS taken a	ıs k x Point L	oad Is(50): k=		20	0 100 200 300			P //	perpendicular parallel

(Diametrial) POINT LOAD STRENGTH INDEX TEST DATA

Contract: Fortfield Road, Terenure, Dublin 6 Sample Type: Core Contract no. 24013
Date of test: 06/05/2022

Date of test.	00/03/202								
RC No.	Depth	D (Diameter)	P (failure load)	F	Is (index strength)	ls(50) (index	*UCS		
	m	mm	kN		Мра	strength) Mpa	MPa	Туре	Orienation
RC05	9.90	78	23.0	1.222	3.78	4.62	92	d	//
	10.90	78	6.0	1.222	0.99	1.20	24	d	//
	11.40	78	14.0	1.222	2.30	2.81	56	d	//
	12.50	78	4.0	1.222	0.66	0.80	16	d	//
	12.60	78	4.0	1.222	0.66	0.80	16	d	//
RC06	9.70	78	21.0	1.222	3.45	4.22	84	d	//
	10.30	78	16.0	1.222	2.63	3.21	64	d	//
	12.20	78	19.0	1.222	3.12	3.81	76	d	//
	12.70	78	4.0	1.222	0.66	0.80	16	d	//
	13.30	78	12.0	1.222	1.97	2.41	48	d	//
Sta	tistical Sumn	nary Data	ls(50)	UCS*	*LICS Normal	Distribution Cur	ve	Ah	breviations
Number of Sa			10	10	0.16			_	irregular
Minimum			0.80	16	0.14			а	axial
Average			2.47	49	0.12			b	block
Maximum			4.62	92	0.1			d	diametral
Standard Dev	/.		1.49	30					
Upper 95% C		mit	5.40	0.06 //			appro	x. orientation	
Lower 95% C	Confidence Li	mit	-0.46	-9.16	0.04				planes of
					0.02			weak	ness/bedding
Comments:					0 +			U	unknown
*UCS taken a	s k x Point L	oad ls(50): k=		20	0 10	0 200	300	Р	perpendicular
								//	parallel

Uniaxial Compression Test Report Sheet I.G.S.L. Sample Identification Contract Name: Fortfield Road, Terenure, Dublin 6 Job Number: 24013 RC03 Hole No: Depth (m): 11.40m Sample Description Colour: Dark blueish grey Fine-grained Grain size: Weathering Grade: Fresh LIMESTONE Rock Type: Weathering Grade Criteria Unchanged from original state I. Fresh: Slight discolouration, slight weakening II. Slightly weathered: III. Moderately weathered: Considerable weakening, penetrative discolouration IV. Highly weathered: Considerable weakening, penetrative discolouration, breaks in hand Sample Measurements Sketch of Failure Surfaces Length 204 Diameter (Ø) 78.1 mm Testing kN/min Load Rate 4.3 428 kN Load at Failure (P) Strength Calculations Uniaxial Compressive Strength = 428000 4788.19385 1000 x P $\prod x (\emptyset/2)^2$ (Mpa) 89.34 (Mg/m^3) **Bulk Density** 2.65

Notes:

Uniaxial Compression Test Report Sheet

I.G.S.L.

Sample Identification

Contract Name: Fortfield Road, Terenure, Dublin 6

 Job Number:
 24013

 Hole No:
 RC04

 Depth (m):
 12.40m

Sample Description

Colour: Dark blueish grey
Grain size: Fine-grained

Weathering Grade: Fresh
Rock Type: LIMESTONE

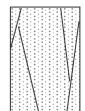
Weathering Grade Criteria

I. Fresh: Unchanged from original state

II. Slightly weathered: Slight discolouration, slight weakening
III. Moderately weathered: Considerable weakening, penetrative discolouration

IV. Highly weathered: Considerable weakening, penetrative discolouration, breaks in hand

Sample Measurements


Sketch of Failure Surfaces

 Length
 199

 Diameter (Ø)
 78
 mm

Testing

Load Rate 4.3 kN/min
Load at Failure (P) 416 kN

Strength Calculations

Uniaxial Compressive Strength = 416000 4775.94

> _____1000 x P ∏ x (Ø/2)^2

= 87.06 (Mpa)

Bulk Density = 2.66 (Mg/m³)

Notes:

Uniaxial Compression Test Report Sheet I.G.S.L. Sample Identification Contract Name: Fortfield Road, Terenure, Dublin 6 Job Number: 24013 RC05 Hole No: Depth (m): 11.80m Sample Description Colour: Pale blueish grey Fine-grained Grain size: Weathering Grade: Fresh LIMESTONE Rock Type: Weathering Grade Criteria Unchanged from original state I. Fresh: Slight discolouration, slight weakening II. Slightly weathered: III. Moderately weathered: Considerable weakening, penetrative discolouration IV. Highly weathered: Considerable weakening, penetrative discolouration, breaks in hand Sample Measurements Sketch of Failure Surfaces Length 202 Diameter (Ø) 78.1 mm Testing kN/min Load Rate 4.3 289 kN Load at Failure (P) Strength Calculations Uniaxial Compressive Strength = 289000 4788.19385 1000 x P $\prod x (\emptyset/2)^2$ (Mpa) 60.33 (Mg/m^3) **Bulk Density** 2.64

Notes:

Appendix 7 Laboratory Test Results (Environmental)

Report No. 24013 20 | P a g e

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-16335-1

Initial Date of Issue: 11-May-2022

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): John Clancy

Project

24013 Fortfield Rd Terenure (Punch)

Quotation No.: Q20-19951 Date Received: 04-May-2022

Order No.: Date Instructed: 04-May-2022

No. of Samples: 7

Turnaround (Wkdays): 7 Results Due: 12-May-2022

Date Approved: 11-May-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Leachate

Project: 24013 Fortfield Rd Terenure (Punch)

Client: IGSL	Chemtest Job No.:				22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	
Quotation No.: Q20-19951	Chemtest Sample ID.:			1421621	1421622	1421623	1421624	1421625	1421626	1421627		
Order No.:	Client Sample Ref.:			AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106		
	Sample Location:			BH01	BH03	BH04	TP01	TP02	TP03	TP04		
	Sample Type:			SOIL								
	Top Depth (m):		1.0	1.0	2.0	0.70	1.0	0.80	0.50			
Determinand	Accred.	SOP	Type	Units	LOD							
рН	U	1010	10:1		N/A	8.4	8.5	8.6	8.5	8.5	8.5	8.5
Ammonium	U	1220	10:1	mg/l	0.050	0.12	0.055	0.098	0.10	0.078	0.081	< 0.050
Ammonium	N	1220	10:1	mg/kg	0.10	1.4	0.64	1.2	1.2	0.92	0.95	0.57
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	0.12	0.12	< 0.01	0.12	0.13
Benzo[j]fluoranthene	N	1800	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Soil

Project: 24013 Fortfield Rd Terenure (Punch)

Client: IGSL				Job No.:	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335
Quotation No.: Q20-19951		Chem	test San	nple ID.:	1421621	1421622	1421623	1421624	1421625	1421626	1421627
Order No.:		Cli	ent Sam	ple Ref.:	AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106
		5	Sample I	_ocation:	BH01	BH03	BH04	TP01	TP02	TP03	TP04
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	1.0	1.0	2.0	0.70	1.0	0.80	0.50
			Asbes	stos Lab:	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM	DURHAM
Determinand	Accred.	SOP	Units	LOD							
ACM Type	U	2192		N/A	-	-	-	-	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos	No Asbestos
Aspestos identification		2192		IN/A	Detected	Detected	Detected	Detected	Detected	Detected	Detected
Moisture	N	2030	%	0.020	12	15	11	19	12	13	13
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] 0.44	[A] 1.9	[A] 0.43	[A] 23	[A] 0.65	[A] 3.8	[A] 2.0
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] 2.8	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] 1.7
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 12	[A] 4.2	[A] 13	[A] 2.4	[A] 16	[A] 9.4	[A] 4.7
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.016	[A] 0.026	[A] < 0.010	[A] 0.055	[A] 0.017	[A] 0.032	[A] 0.026
Arsenic	U	2455	mg/kg	0.5	9.8	7.3	9.3	22	9.4	9.5	7.0
Barium	U	2455	mg/kg	0	50	33	53	140	71	38	37
Cadmium	U	2455	mg/kg	0.10	1.6	0.55	1.6	2.4	1.5	1.4	0.58
Chromium	U	2455	mg/kg	0.5	14	12	16	25	13	13	15
Molybdenum	U		mg/kg	0.5	2.5	0.8	2.7	3.7	2.7	2.2	0.9
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	25	10	25	26	25	21	11
Mercury	U	2455	mg/kg	0.05	0.06	0.06	0.05	0.09	0.05	0.05	< 0.05
Nickel	Ü		mg/kg	0.50	37	15	43	56	37	31	16
Lead	Ü	2455	mg/kg	0.50	15	15	17	26	14	15	12
Selenium	Ü	2455	mg/kg	0.25	1.3	0.97	1.5	2.4	1.5	1.2	1.1
Zinc	Ü	2455	mg/kg	0.50	64	51	79	95	72	69	50
Chromium (Trivalent)	N	2490	mg/kg	1.0	14	12	16	25	13	13	15
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 3.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0 [A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0 [A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C10-C12 Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0 [A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0 [A] < 1.0
	U		mg/kg	1.0				[A] < 1.0 [A] < 1.0	· ·		[A] < 1.0 [A] < 1.0
Aromatic TPH >C16-C21	l O	∠080	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0

Results - Soil

Project: 24013 Fortfield Rd Terenure (Punch)

Project. 24010 Fortileia Na Tere	T and										
Client: IGSL				Job No.:	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335
Quotation No.: Q20-19951				nple ID.:	1421621	1421622	1421623	1421624	1421625	1421626	1421627
Order No.:				ple Ref.:	AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106
				_ocation:	BH01	BH03	BH04	TP01	TP02	TP03	TP04
				ole Type:	SOIL						
				epth (m):	1.0	1.0	2.0	0.70	1.0	0.80	0.50
				stos Lab:	DURHAM						
Determinand	Accred.	SOP	Units	LOD							
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10						
Benzene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Toluene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	2760	μg/kg	1.0	[A] 3.2	[A] < 1.0					
o-Xylene	U	2760	μg/kg	1.0	[A] 2.1	[A] < 1.0					
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Phenanthrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Coronene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20
PCB 28	N	2815	mg/kg		[A] < 0.0010						
PCB 52	N	2815	mg/kg		[A] < 0.0010						
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total Phenols	U		mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	· ·		9	V	0	ŭ	ŭ	0	V	0	· · · · ·

Results - Single Stage WAC

Project: 24013 Fortfield Rd Terenure (Punch)

Project: 24013 Fortfield Rd Terer				1	1	M 1 - A 1	0.26
Chemtest Job No:	22-16335				Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1421621					Limits	
Sample Ref:	AA175560					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH01					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:]		Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.46	3	5	6
Loss On Ignition	2610	U	%	2.7			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		9.1		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.016		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0065	0.5	10	70
Copper	1455	U	0.0010	0.010	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0080	0.080	0.5	10	30
Nickel	1455	U	0.0005	0.0052	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.37	3.7	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.0	60	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	12						

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 24013 Fortfield Rd Terenure (Punch)

Project: 24013 Fortfield Rd Terer					1	M 1 - A 1	0.111.
Chemtest Job No:	22-16335				Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1421622					Limits	
Sample Ref:	AA175553					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH03					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.93	3	5	6
Loss On Ignition	2610	U	%	3.4			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	0.0006	0.0064	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0008	0.0078	0.5	10	70
Copper	1455	U	0.0021	0.021	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0031	0.031	0.5	10	30
Nickel	1455	U	0.0009	0.0089	0.4	10	40
Lead	1455	U	0.0006	0.0055	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.0	10	800	15000	25000
Fluoride	1220	U	0.36	3.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.9	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	15

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421623					Limits	
Sample Ref:	AA175566					Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH04					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.47	3	5	6
Loss On Ignition	2610	U	%	2.1			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.9		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
-			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0052	0.5	10	70
Copper	1455	U	0.0007	0.0073	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.010	0.10	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.25	2.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	2.6	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	11

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421624					Limits	
Sample Ref:	AA163096					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP01					hazardous	Hazardous
Top Depth(m):	0.70				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.85	3	5	6
Loss On Ignition	2610	U	%	3.8			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
-			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0053	0.5	10	70
Copper	1455	U	0.0011	0.012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0023	0.023	0.5	10	30
Nickel	1455	U	0.0005	0.0054	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.58	5.8	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.6	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	19		

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421625					Limits	
Sample Ref:	AA163099					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP02					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.44	3	5	6
Loss On Ignition	2610	U	%	2.7			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		9.0		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance l	leaching test
-			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0057	0.5	10	70
Copper	1455	U	0.0008	0.0082	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0052	0.052	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.35	3.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	3.8	< 50	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	12		

Waste Acceptance Criteria

Project:	24013	Fortfield	Rd	Terenure	(Punch)
----------	-------	-----------	----	----------	---------

Chemtest Job No:	22-16335				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1421626					Limits	
Sample Ref:	AA173103					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP03					hazardous	Hazardous
Top Depth(m):	0.80				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:				J		Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.54	3	5	6
Loss On Ignition	2610	U	%	3.3			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.022		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0056	0.5	10	70
Copper	1455	U	0.0011	0.011	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0064	0.064	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.36	3.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.0	60	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punc
--

Chemtest Job No:	22-16335				Landfill \	Naste Acceptanc	e Criteria	
Chemtest Sample ID:	1421627					Limits		
Sample Ref:	AA173106					Stable, Non-		
Sample ID:						reactive		
Sample Location:	TP04					hazardous	Hazardous	
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:						Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 0.74	3	5	6	
Loss On Ignition	2610	U	%	3.1			10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6			
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1			
TPH Total WAC	2670	U	mg/kg	[A] < 10	500			
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100			
рН	2010	U		8.8		>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.019		To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test	
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0006	0.0064	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	0.0009	0.0087	0.5	10	70	
Copper	1455	U	0.0017	0.017	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0026	0.026	0.5	10	30	
Nickel	1455	U	0.0008	0.0085	0.4	10	40	
Lead	1455	U	0.0005	0.0050	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	< 0.003	< 0.003	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.47	4.7	10	150	500	
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020	N	78	780	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610	U	5.2	52	500	800	1000	

Solid Information								
Dry mass of test portion/kg	0.090							
Moisture (%)	13							

Waste Acceptance Criteria

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1421621	AA175560		BH01		А	Amber Glass 250ml
1421621	AA175560		BH01		А	Plastic Tub 500g
1421622	AA175553		BH03		А	Amber Glass 250ml
1421622	AA175553		BH03		А	Plastic Tub 500g
1421623	AA175566		BH04		А	Amber Glass 250ml
1421623	AA175566		BH04		А	Plastic Tub 500g
1421624	AA163096		TP01		А	Amber Glass 250ml
1421624	AA163096		TP01		А	Plastic Tub 500g
1421625	AA163099		TP02		А	Amber Glass 250ml
1421625	AA163099		TP02		А	Plastic Tub 500g
1421626	AA173103		TP03		А	Amber Glass 250ml
1421626	AA173103		TP03		А	Plastic Tub 500g
1421627	AA173106		TP04		А	Amber Glass 250ml
1421627	AA173106		TP04		А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary				
1010	pH Value of Waters	рН	pH Meter				
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter				
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.				
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).				
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation				
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection				
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.				
2010	pH Value of Soils	рН	pH Meter				
2015	Acid Neutralisation Capacity	Acid Reserve	Titration				
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.				
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930				
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES				
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection				
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry				
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.				
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.				
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.				
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.				
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.				
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.				
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID				

Test Methods

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Ν Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-17076-1

Initial Date of Issue: 18-May-2022

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): John Clancy

Project 24013 Fortfield Road Terenure (Punch

)

Quotation No.: Q20-19951 Date Received: 10-May-2022

Order No.: Date Instructed: 10-May-2022

No. of Samples: 6

Turnaround (Wkdays): 7 Results Due: 18-May-2022

Date Approved: 18-May-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Leachate

Client: IGSL			Che	b No.:	22-17076	22-17076	
Quotation No.: Q20-19951		(Chemte	st Sam	ple ID.:	1424873	1424874
			Cli	ple ID.:	AA175571	AA171709	
			Sa	cation:	BH05	BH06	
				е Туре:	SOIL	SOIL	
				2.0	1.0		
Determinand	Accred.	SOP	Type	Units	LOD		
рН	U	1010	10:1		N/A	8.4	8.7
Ammonium	U	1220	10:1	mg/l	0.050	0.18	0.59
Ammonium	N 1220 10:1 mg/kg 0.10				2.1	7.5	
Boron (Dissolved)	U 1455 10:1 mg/kg 0.01				< 0.01	< 0.01	
Benzo[j]fluoranthene	N	1800	10:1	μg/l	0.010	< 0.010	< 0.010

Results - Soil

Client: IGSL				Job No.:		22-17076	22-17076	22-17076	22-17076	22-17076
Quotation No.: Q20-19951				nple ID.:	1424870	1424871	1424872	1424873	1424874	1424875
				nple ID.:	AA175561	AA175554	AA175567	AA175571	AA171709	AA171710
		5		_ocation:	BH01	BH03	BH04	BH05	BH06	BH06
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	2.0	2.0	3.0	2.0	1.0	2.0
			Asbes	stos Lab:				DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A				-	-	
Asbestos Identification	U	2192		N/A				No Asbestos Detected	No Asbestos Detected	
Moisture	N	2030	%	0.020	11	11	13	11	16	9.7
pH (2.5:1)	N	2010		4.0	[A] 8.8	[A] 9.4	[A] 9.0			[A] 9.2
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40				[A] < 0.40	[A] < 0.40	
Magnesium (Water Soluble)	N	2120	g/l	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010			[A] < 0.01
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	[A] 0.012	[A] 0.047	[A] 0.022			[A] 0.013
Total Sulphur	U	2175	%	0.010	[A] 0.025	[A] 0.023	[A] 0.046			[A] 0.026
Sulphur (Elemental)	U	2180	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Chloride (Water Soluble)	U	2220	g/l	0.010	[A] < 0.010	[A] < 0.010	[A] 0.014			[A] 0.023
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	< 0.010			< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50				[A] < 0.50	[A] < 0.50	
Sulphide (Easily Liberatable)	N		mg/kg	0.50				[A] 18	[A] 24	
Ammonium (Water Soluble)	U	2220	g/l	0.01	< 0.01	< 0.01	< 0.01			< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] < 0.010	[A] 0.014	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.01
Arsenic	Ü	2455	mg/kg	0.5	. ,	. ,	. ,	1.4	1.7	
Barium	Ü		mg/kg	0				8	12	
Cadmium	Ü		mg/kg	0.10				0.21	0.27	
Chromium	Ü		mg/kg	0.5				1.9	1.9	
Molybdenum	U		mg/kg	0.5				< 0.5	< 0.5	
Antimony	N		mg/kg	2.0				< 2.0	< 2.0	
Copper	U		mg/kg	0.50				3.2	3.4	
Mercury	Ü		mg/kg	0.05				< 0.05	< 0.05	
Nickel	Ü		mg/kg	0.50				4.2	5.5	
Lead	U		mg/kg	0.50				2.9	2.3	
Selenium	Ü		mg/kg	0.25				0.25	< 0.25	
Zinc	Ü		mg/kg	0.50				11	9.1	
Chromium (Trivalent)	N		mg/kg	1.0				1.9	1.9	
Chromium (Hexavalent)	N		mg/kg	0.50				< 0.50	< 0.50	
Mineral Oil (TPH Calculation)	N		mg/kg	10				< 10	< 10	
Aliphatic TPH >C5-C6	N		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C6-C8	N		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C8-C10	U		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C10-C12	Ü		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C12-C16	Ü		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C16-C21	Ü		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C21-C35	U		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C35-C44	N		mg/kg	1.0				[A] < 1.0	[A] < 1.0	

Results - Soil

Client: IGSL				Job No.:	22-17076	22-17076	22-17076	22-17076	22-17076	22-17076
Quotation No.: Q20-19951				nple ID.:	1424870	1424871	1424872	1424873	1424874	1424875
				mple ID.:		AA175554	AA175567	AA175571	AA171709	AA17171
		5		Location:	BH01	BH03	BH04	BH05	BH06	BH06
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	2.0	2.0	3.0	2.0	1.0	2.0
				stos Lab:				DURHAM	DURHAM	
Determinand	Accred.	SOP	Units							
Total Aliphatic Hydrocarbons	N		mg/kg	5.0				[A] < 5.0	[A] < 5.0	
Aromatic TPH >C5-C7	N		mg/kg					[A] < 1.0	[A] < 1.0	
Aromatic TPH >C7-C8	N		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C8-C10	U		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C10-C12	U		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C12-C16	U		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C21-C35	U		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C35-C44	N		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Total Aromatic Hydrocarbons	N		mg/kg	5.0				[A] < 5.0	[A] < 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0				[A] < 10	[A] < 10	
Benzene	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
Toluene	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
Ethylbenzene	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
m & p-Xylene	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
o-Xylene	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
Naphthalene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Acenaphthylene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Acenaphthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Fluorene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Phenanthrene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Anthracene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Fluoranthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Pyrene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[a]anthracene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Chrysene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[b]fluoranthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[k]fluoranthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Benzo[a]pyrene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Indeno(1,2,3-c,d)Pyrene	N	-	mg/kg					[A] < 0.010	[A] < 0.010	
Dibenz(a,h)Anthracene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Benzo[g,h,i]perylene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Coronene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Total Of 17 PAH's	N		mg/kg					[A] < 0.20	[A] < 0.20	
PCB 28	N		0 0	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 52	N			0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 90+101	N			0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 118	N			0.0010				[A] < 0.0010	[A] < 0.0010	

Results - Soil

Client: IGSL	Chemtest Job No.:			22-17076	22-17076	22-17076	22-17076	22-17076	22-17076	
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1424870	1424871	1424872	1424873	1424874	1424875
		С	lient Saı	mple ID.:	AA175561	AA175554	AA175567	AA175571	AA171709	AA171710
	Sample Location:		BH01	BH03	BH04	BH05	BH06	BH06		
	Sample Type: Top Depth (m):		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL		
			2.0	2.0	3.0	2.0	1.0	2.0		
			Asbes	stos Lab:				DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD						
PCB 153	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 138	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 180	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
Total Phenols	U	2920	mg/kg	0.10	·			< 0.10	< 0.10	

Project:	24013	Fortfield	Road	Terenure	(Punch)	Ĺ

Project: 24013 Fortfield Road Tel	22-17076				Landelli	Manta Annanti	. Oultonia	
Chemtest Job No:					Landfill \	Waste Acceptanc	e Criteria	
Chemtest Sample ID:	1424873					Limits		
Sample Ref:						Stable, Non-		
Sample ID:	AA175571					reactive		
Sample Location:	BH05					hazardous	Hazardous	
Top Depth(m):	2.0				Inert Waste Landfill	waste in non-	Waste	
Bottom Depth(m):						hazardous	Landfill	
Sampling Date:						Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	[A] 0.33	3	5	6	
Loss On Ignition	2610	U	%	5.6			10	
Total BTEX	2760	U	mg/kg	[A] < 0.010	6			
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1			
TPH Total WAC	2670	U	mg/kg	[A] < 10	500			
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		-	
рН	2010	U		8.8	-	>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.0070		To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test	
			mg/l	mg/kg	using B	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25	
Barium	1455	U	< 0.005	< 0.0005	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5	
Chromium	1455	U	0.0012	0.013	0.5	10	70	
Copper	1455	U	0.0010	0.0095	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2	
Molybdenum	1455	U	0.0079	0.079	0.5	10	30	
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40	
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50	
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7	
Zinc	1455	U	0.004	0.036	4	50	200	
Chloride	1220	U	< 1.0	< 10	800	15000	25000	
Fluoride	1220	U	0.24	2.4	10	150	500	
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000	
Total Dissolved Solids	1020	N	59	580	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610	U	9.9	99	500	800	1000	

Solid Information								
Dry mass of test portion/kg	0.090							
Moisture (%)	11							

Waste Acceptance Criteria

Project:	24013	Fortfield	Road	Terenure	(Punch)	

Chemtest Job No:	22-17076				l andfill \	Naste Acceptanc	o Critoria
Chemtest Sample ID:	1424874				Landilli	Limits	e Officeria
Sample Ref:	1424074					Stable, Non-	
Sample ID:	AA171709					reactive	
Sample Location:	BH06					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):	1.0				Landfill	hazardous	Landfill
Sampling Date:					Landini	Landfill	Landini
Determinand	SOP	Accred.	Units			Landini	
Total Organic Carbon	2625	U	%	[A] 0.42	3	5	6
Loss On Ignition	2610	U	%	2.9			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U	g.r.g	8.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
,			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0069	0.5	10	70
Copper	1455	U	0.0011	0.011	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0077	0.077	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.41	4.1	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.5	65	500	800	1000

Solid Information			
Dry mass of test portion/kg	0.090		
Moisture (%)	16		

Waste Acceptance Criteria

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1424870		AA175561	BH01		А	Amber Glass 250ml
1424870		AA175561	BH01		А	Plastic Tub 500g
1424871		AA175554	BH03		А	Amber Glass 250ml
1424871		AA175554	BH03		А	Plastic Tub 500g
1424872		AA175567	BH04		А	Amber Glass 250ml
1424872		AA175567	BH04		А	Plastic Tub 500g
1424873		AA175571	BH05		А	Amber Glass 250ml
1424873		AA175571	BH05		А	Plastic Tub 500g
1424874		AA171709	BH06		А	Amber Glass 250ml
1424874		AA171709	BH06		А	Plastic Tub 500g
1424875		AA171710	BH06		А	Amber Glass 250ml
1424875		AA171710	BH06		А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.

Test Methods

SOP	Title	Parameters included	Method summary
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u> Appendix 8 Site Plan

Report No. 24013 21 | P a g e

