

Residential Development, Fortfield Road, Terenure

Outline Construction Management Plan 222102-PUNCH-XX-XX-RP-C-0006

November 2024

Document Control

Document Number: 222102-PUNCH-XX-XX-RP-C-0006

Status	Rev	Description	Date	Prepared	Checked	Approved
Α0	C01	Stage 2 LRD Submission	07/03/2024	JP. Murray	MC. Daly	P. Casey
Α0	C02	Stage 3 LRD Submission	01/11/2024	P. Casey	P. Casey	P. Casey

Table of Contents

Docum	ent Con	itroli						
Table o	of Conte	entsii						
1	Introdu	uction1						
2	Descrip	otion of the Works1						
3	Indicat	cive Construction Programme1						
4	Site Se	rt-Up and Security1						
5	Site Ac	ccess						
6	Materia	al Storage and Delivery2						
7	Traffic	Management Plan2						
8	Potential Interface with Other Projects							
9	Genera	al Construction Approach4						
9.1	Cons	struction Working Space4						
9.2	Outl	ine Phasing Strategy4						
9.3	Outl	ine Works Description5						
9.	3.1 Ho	parding, Site Set-up and Formation of Site Access/Egress5						
9.	3.2 Si	te Clearance and Demolition5						
9.	3.3 Co	onstruction Sequence of Development5						
10	Waste	Management Plan						
11	Commi	unications and Local Stakeholder Management7						
12	Aboric	ultural Impact and Tree Protection Strategy7						
13	Constr	uction Noise, Dust and Vibration						
14	Workin	ng Hours8						
15	Lightin	ng9						
16	Constr	uction Employment9						
Append	dix A	Outline Construction Sequence						
Append	dix B	Waste Characterisation Report						

1 Introduction

The purpose of this document is to briefly outline the general activities required for the construction of the proposed Fortfield Road development on a site located at Fortfield Road, Terenure, Dublin 6W.

A Main Contractor has not yet been appointed to carry out the proposed works. Once appointed, it will be the responsibility of the Main Contractor to prepare and submit a detailed construction management plan for the Client's submission to the local authority for approval. The construction management plan will be a live document that will be updated throughout the project lifecycle by the Main Contractor as required.

Regardless of the form of contract, the Contractor will be contractually bound by any conditions arising from the site constraints identified and specified, all Statutory Regulations governing the works, and any additional measures or modifications that may be imposed on the proposed development by the Local Authority or An Bord Pleanála.

2 Description of the Works

The development will comprise a Large-Scale Residential Development (LRD) on a site at Fortfield Road, Terenure of 284 no. units delivering 19 no. houses and 265 no. apartments made up of studios; 1 beds; 2 beds; 3 beds; and 4 beds. The development will also provide community, cultural and arts space and a creche. Communal internal space for residents will also be delivered. Provision of car, cycle and motorbike parking will be provided throughout the development, including at basement and surface level. Vehicular/pedestrian/cyclist access from Fortfield Road. Proposed upgrade works to the surrounding road network is also included. All associated site development works, open space, services provision, ESB substations, plant areas, waste management areas, landscaping (both public and communal) and boundary treatments.

The proposed works are outlined in a series of architectural drawings prepared by Urban Agency Architects and engineering drawings prepared by PUNCH and supplied as part of the planning documentation.

3 Indicative Construction Programme

It is estimated that the construction programme for the works associated with the proposed works will last 30-36 months from the date of commencement. This estimation is based on the typical construction programmes for other similar developments that are currently underway. It is envisaged that construction of the proposed building and external works will be carried out over a single phase. The Main Contractor will be required to prepare a detailed construction programme as part of their tender proposal.

4 Site Set-Up and Security

The Main Contractor will be required to submit a site layout plan that will detail the proposed location of the site compound. The Contractor will ensure that the site compound will be serviced as required and will be secured with appropriate fencing/hoarding. The site compound will be used as the primary location for the storage of materials, plant and equipment, site offices and worker welfare facilities. As Project Supervisor Construction Stage (PSCS), the Contractor will be responsible for site security and they are to ensure that the site and site compound are adequately secured at all times.

As with the other construction activities that are being carried out within the Dublin City Council local authority area, activities associated with the construction compounds will be subject to restrictions to

the nature and timing of operations so that they do not cause undue disturbance to neighbouring areas and communities.

The site layout plan will also include the site perimeter and the proposed detail with regards the hoarding and gate system.

5 Site Access

A new access route is proposed from Fortfield Road to the west of the site. The proposed scheme will integrate the site into the surrounding footpath networks providing construction and operational vehicle access and convenient pedestrians/cyclist routes linking the site with the surrounding area.

Construction related traffic will enter the site via Fortfield Road. Construction traffic associated with the development can proceed along the Fortfield Road to the Templeogue Road (R137) to the M50 or other route depending on destination. Refer to Section 7 and Figure 7-1 below for illustration.

Furthermore, in order to reduce the requirement for site parking for employees, public transport such as Dublin Bus should be utilised.

6 Material Storage and Delivery

The Contractor will ensure that the delivery of materials is coordinated to minimise impacts to adjacent properties. The Contractor will ensure that all materials are adequately stored and secured in their site compound.

For more details please refer to the 'Outline Resource & Waste Management Plan' prepared and included in the planning submission.

The Contractor will ensure the roads adjacent to the site are kept clean and free of debris.

7 Traffic Management Plan

The Contractor will be required to prepare and submit a detailed traffic management plan as part of their tender submission. Once appointed, the preferred Contractor will further develop the traffic management plan as required for the developer to submit to the local authority for approval in advance of works commencing onsite. The Contractor will ensure that advanced warning signs are erected on approaches to the site as required by the PSCS. The Contractor will use a competent sign provider and all signage that meets the requirements of the Safety, Health & Welfare at Work (General Applications) Regulations 2007 and Chapter 8 Traffic Signs Manual. Any proposed temporary road markings must also confirm to the requirements of Chapter 8 of the Traffic Signs Manual.

Residential Development, Fortfield Road, Terenure Outline Construction Management Plan

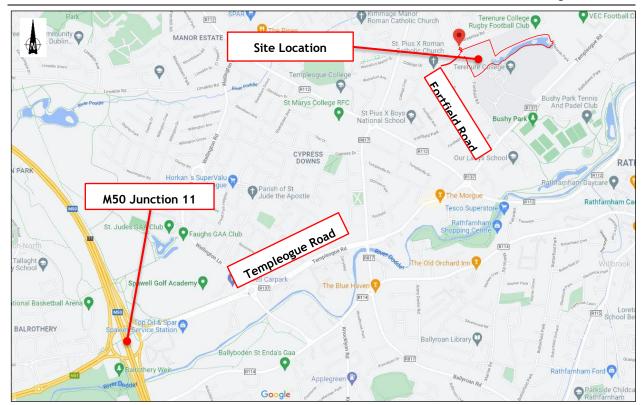


Figure 7-1: Proposed Primary Route To/From Site © Google Maps.

The Main Contractor will be responsible for all site access and works activity and must ensure the continued operation of the surrounding local road network as a result of its construction traffic.

The management of construction traffic on the public and private road networks in and around the proposed development is a critical part of the overall project and must be actively managed by the Contractor.

The Contractor must submit a Construction Traffic Management Plan to the Local Authority for approval. Haulage vehicle movements should be fully coordinated to comply with the requirements of the agreed plan:

- Construction vehicles must not stop or park along the routes at any time;
- Haulage vehicles must not travel in convoys greater than two vehicles at any time;
- Site entrance to remain free of parked or stationary vehicles at all times;
- All loading of demolition material will occur within the site boundary;
- All off-loading of deliveries will take place within the site, remote from the public road and will
 access via the agreed construction access point.

The site is located in an established suburban area where the road and junction space is shared with public road users and construction traffic associated with other nearby developments. Therefore, the flow of construction traffic will need to be marshalled and controlled to ensure that potential conflicts are avoided as much as possible.

There are no proposals to introduce temporary road closures or temporary traffic light signals to facilitate construction of the proposed development. There are also no proposals to amend the existing local access arrangements to the surrounding areas.

For more details please refer to the 'Outline Resource & Waste Management Plan' prepared and included in the planning submission.

8 Potential Interface with Other Projects

Depending on development activity in the local environs, the proposed works may have an interface with other projects within the locality. The appointed Contractor will need to coordinate with other Contractors as required to ensure a smooth interface between projects (if/as applicable).

There may be a number of PSCS's operating in the urban locality at any one time on individual sites. It will be responsibility of the appointed Contractor as PSCS to ensure that delivery and haul routes, site access and egress points and potential crossing points associated with the site are fully coordinated and agreed with other Contractors in advance of the works commencing.

9 General Construction Approach

9.1 Construction Working Space

Construction working space will be set out in the detailed construction management plan at compliance stage.

Construction access routes, haul routes and delivery routes to the site are to be agreed with the Engineer/Employer's Representative in advance of works commencing onsite.

Any road closures required will be submitted and approved in advance with the local authority. It is the responsibility of the Main Contractor to prepare and submit the road closure application to the local authority in advance of works commencing onsite.

9.2 Outline Phasing Strategy

It is currently envisaged that the proposed development will be completed in a single phase, as detailed below. For further details relating to the works, please refer to the more detailed planning drawings (architectural, engineering, landscape, etc.).

Phase 1:

- 1. Establish secure site perimeter (fencing/hoarding) and establishment of the construction compound(s).
- 2. Construction of access road and connections from Fortfield Road to the Fortfield Road development entrance.
- 3. Construction of associated services along the access road and Fortfield Road to enable connection to relevant service tie-in locations (to be progressed in tandem with Item 1).
- 4. Topsoil removal and stockpiling as required throughout development lands.
- 5. Site regrading throughout development extents to establish construction levels and introduce berms.
- 6. Construction of the basement car park and associated bulk excavation. Stockpiling of excavated material, testing and re-use as required.
- 7. Completion of internal construction access routes (temporary surfacing) throughout the development interior and completion of associated service routes and ancillary works.
- 8. Establish proposed and future potential access routes to adjoining lands as required, e.g. adjacent school and park lands.
- 9. Installation of drainage/SuDS elements throughout the site.
- 10. Construction of residential units in defined sequence.

- 11. Completion of internal road network to permanent status, including associated private realm SuDS measures.
- 12. Delivery of landscaping and parks/recreation elements throughout the development extents.

9.3 Outline Works Description

The construction works will involve an indicative sequence of works, as described in short below. The Contractor will outline works which impact public spaces within the Construction Management Plan that shall be subject to submission and agreement with Dublin City Council.

9.3.1 Hoarding, Site Set-up and Formation of Site Access/Egress

The site area will be enclosed with hoarding details of which are to be agreed with DCC. Hoarding panels will be maintained and kept clean for the duration of the works. This will involve erecting hoarding around the proposed site perimeter in line with the finished development extents.

The available site footprint will enable the Contractor to set up the site compound within the site boundary.

The Contractor will be responsible for the security of the site. The Contractor will be required to:

- Operate a Site Induction Process for all site staff;
- Ensure all site staff shall have current 'Safe Pass' cards and appropriate PPE;
- Install adequate site hoarding to the site boundary;
- Maintain site security at all times;
- Install access security in the form of turn-styles and gates for staff;
- Separate public pedestrian access from construction vehicular traffic;

9.3.2 Site Clearance and Demolition

The location is a greenfield site and will require minimal site clearance beyond topsoil removal and some tree removal.

It is noted that the proposed development consists of the excavation and construction of a single level basement parking level, the subsequent construction of multiple storeys of residential apartments and the associated site landscaping and ancillary development.

9.3.3 Construction Sequence of Development

The construction of Blocks A-C will follow completion of the excavation/grading works and associated establishment of the basement formation levels. The subsequent superstructure will consist of construction of RC framed structures on ground floor transfer structure (where applicable and coincident with the basement footprint) and on ground bearing substructure elsewhere.

The construction of Block D will consist of construction of RC framed structures on ground bearing substructure.

The construction methodology and programme of these activities will be dictated by the Contractor.

Site Grading

The proposed basement will involve the excavation of approximately 13,000m³ of material. Site investigations and a geotechnical desktop review of the site shows that the predominant soils in the area consist of low permeability soils overlying limestone and shale bedrock. Based on site investigation results and a review of the external GSI geotechnical boreholes in the immediate vicinity of the development site, rock is typically <u>not</u> encountered at depths down to 5 or 10m bgl. The basement formation level is at approx. 44.80mOD (relative to existing ground levels of 47.50mOD, so excavation into the underlying rock is not anticipated during excavation.

The Contractor must prepare a Construction and Demolition Waste Management Plan in accordance with the best practice guidelines for the preparation of resource & waste management plans for construction & demolition projects (EPA 2021) and ensure that all material is disposed of at an appropriately licensed land fill site. As outlined in the appended 'Waste Characterisation Assessment' for Fortfield Road and the 'Geotechnical Report' by IGSL included as an appendix to the Engineering Planning Report, all samples tested were classified as non-hazardous. The Contractor must also outline detailed proposals within the Construction Management Plan to accommodate construction traffic.

Basement Level Construction

The construction of the basement level will involve the excavation of the basement footprint and immediate surrounds to enable construction of an RC foundation slab with thickenings coinciding with column locations. The basement level will include a perimeter wall along its sunken extents relative to surrounding finished levels and will consist of RC construction (likely a pre-cast component). The spoil generated from the basement level construction will be recycled and re-used (in accordance with the 'Outline Resource & Waste Management Plan') and, where necessary, disposed at an appropriate licensed land fill site. The concrete operations associated with the basement structure will require concrete deliveries to site.

The groundwater level is to be confirmed by on-site testing by the SI Contractor. To prevent any potential risk of groundwater intrusion into the lower structure the basement car park will be constructed as a water-tight box, the proposed grade for the basement is Grade 1, as per BS 8102:2009. The proposed structural integrity of the basement perimeter walls and their ability to prevent groundwater intrusion into the site is deemed sufficient to mitigate the potential risk to acceptable limits. The concrete works will involve concrete deliveries to site and adequate wash-down and wheel wash facilities must be provided for the concrete wagons.

Construction Sequence of Superstructure

The construction of the various superstructures will involve complex sequencing of activities and various construction methodologies could be adopted to deliver the Contract. The nature of the buildings throughout the development, the column grids and economic factors, among other issues, would suggest that the buildings will be constructed utilising reinforced concrete frames.

As noted, the construction methodology and therefore the programme of the construction activities will be dictated by the Contractor.

Building Structures - Blocks D:

- Construction of the ground floor foundation slabs and substructure.
- Construction of rising elements to Level 1 and construction of Level 1 floor slab;
- Similar sequence of construction of rising elements and floor slabs

Building Structure - Block A, B and C:

- Construction of the basement level (including substructure elements and permanent basement parking perimeter wall structures;
- Construction of rising elements to Level 0 and construction of Level 0 floor slab and transfer structures;
- Similar sequence of construction of rising elements and floor slabs

Envelope / Cladding - All Blocks:

- Commencement of envelope works to Level 1 when structure has progressed to approximately Level 2/3;
- Advancing of Cladding two levels behind the structure.

Envelope / Cladding - All Blocks:

• The structural blockwork will also act as the envelope for the structure, and cladding will follow completion of the blockwork.

Mechanical & Electrical Fit-Out:

- First fix will commence from ground floor level upwards;
- This will be followed by the second fix and final connections.

Fit-Out:

- Initial installation of stud work when cladding completed and floor is weather tight;
- Installation of equipment and associated connection to services;
- Completion of finishes.

Commissioning:

• The final commissioning period will commence during fit-out.

The above represents a high-level indicative construction sequence only. The actual sequence will be dictated by the Contractor. The Contractor will issue a detailed construction programme outlining the various stages prior to commencement of works.

It is envisaged that multiple tower cranes will be temporarily erected to accommodate the apartment block construction works for the distribution of building materials and plant. The Contractor is required to obtain all necessary licences from DCC.

A high-level illustration of the potential construction sequence is provided in a series of sketches in Appendix A.

10 Waste Management Plan

The Main Contractor will be required to prepare a detailed waste management plan for the project. This will be included in the overall construction management plan that will be submitted to the local authority.

For more details please refer to the 'Outline Resource & Waste Management Plan' prepared and included in the planning submission.

11 Communications and Local Stakeholder Management

The Contractor will, as required, liaise with owners of the local properties in advance of works commencing onsite. The Contractor will use a competent sign provider and all signage used will meet the requirements of the Safety, Health & Welfare at Work (General Applications) Regulations 2007 and Chapter 8 Traffic Signs Manual.

12 Aboricultural Impact and Tree Protection Strategy

The overall objectives are to retain the maximum number of good quality trees whilst also achieving densities of housing compliant with current standards and planning recommendations. Proposed new tree planting is contained within the Landscape Masterplan drawings by Niall Montgomery & Partners,

submitted as part of the planning package. These plantings will provide a new generation of trees which have the potential to develop and add to the existing tree cover on the site.

A Tree Protection Strategy is provided as part of the arboricultural element of the submission with the aim of ensuring retained trees are maintained for the duration of the construction stage of the development free of negative construction related impacts.

A Site Arborist shall be appointed prior to the commencement of site construction works and will be responsible for the setting up and monitoring of tree protection, liaising with local authority tree / planning officers and providing feedback and advice to the design construction teams on issues relevant to trees. The Site Arborist shall be retained for the duration of construction works and should be appointed to carry out a post-construction tree survey/assessment.

For full details please refer to the Arboricultural Assessment, Aboricultural Impact and Tree Protection Strategy Report Plan prepared by The Tree File Ltd. and included in the planning submission.

13 Construction Noise, Dust and Vibration

The Main Contractor will be required to monitor noise, dust and vibration as will be outlined in the planning conditions. The Contractor will establish baselines for noise, dust and vibration in advance of works commencing onsite. It is noted that a baseline noise survey has been undertaken at the development site by AWN Consulting Limited to determine the existing environment at the site. Please refer to the 'Noise & Vibration Impact Assessment for Planning' included in the planning application for details.

As part of their detailed construction management plan, the Contractor will be required to clearly indicate how they plan on monitoring noise, dust and vibration throughout the course of the project. This will be especially critical in relation to the basement construction and associated piling works. The Contractor will also be required to clearly outline the mitigation measures they plan on putting in place to ensure that permissible construction noise, dust and vibration levels for a development of this scale (as directed by Dublin City Council by way of planning condition) are not exceeded.

For more details, please refer to the 'Outline Resource & Waste Management Plan' by PUNCH Consulting Engineers and the 'Noise & Vibration Impact Assessment for Planning' by AWN Consulting Limited prepared and included in this planning submission.

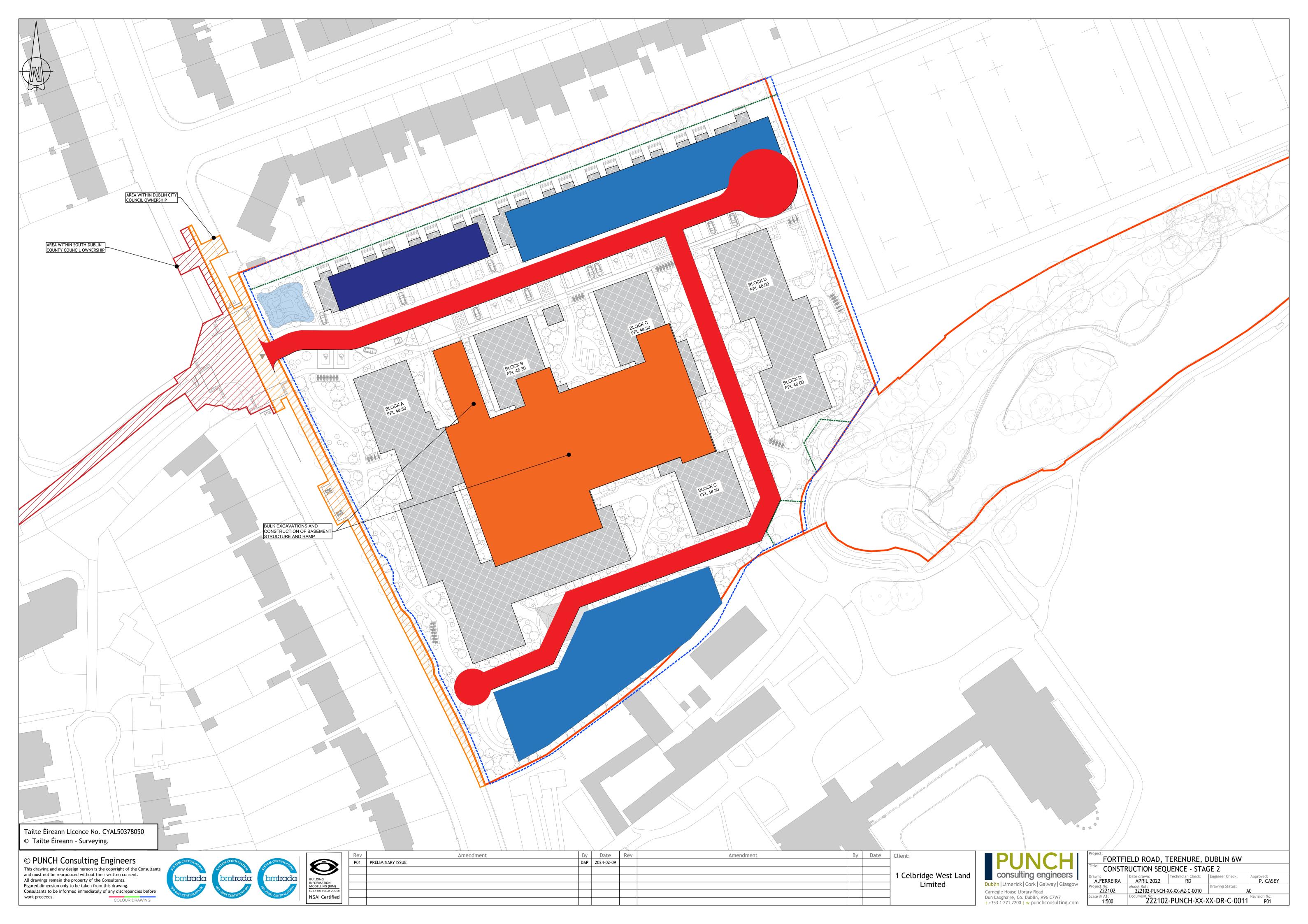
14 Working Hours

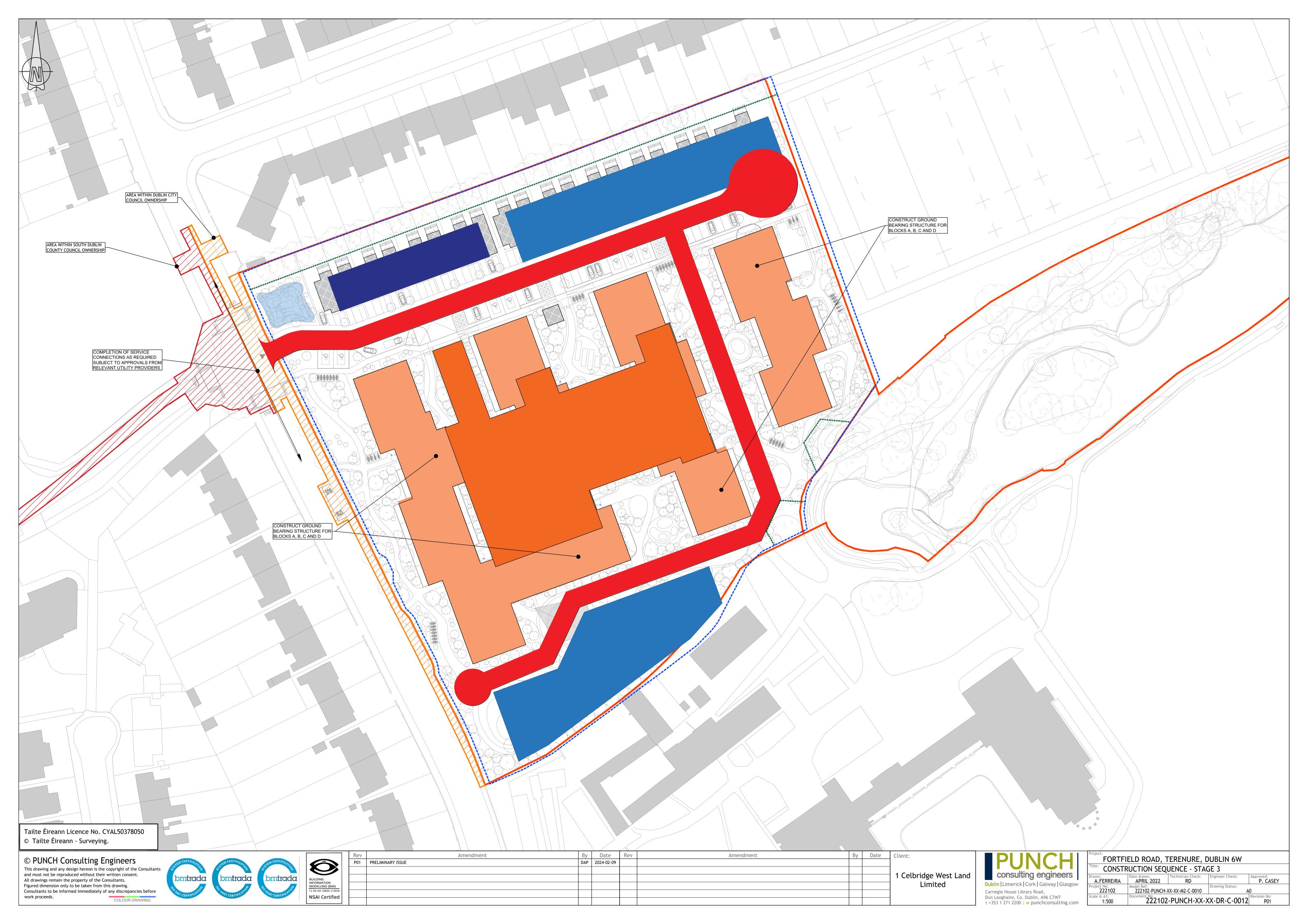
The proposed hours of work on site will be 07:00 hrs to 18:00 hrs Monday to Friday and 08:00 hrs to 14:00 hrs Saturday unless otherwise specified by planning conditions. It is anticipated that construction working hours will be stipulated in the planning conditions attached to the planning grant. Any working hours outside the normal construction working hours will be agreed with Dublin City Council. The planning of such works will take consideration of sensitive receptors. Consideration of nearby sensitive receptors are outlined in the 'Noise & Vibration Impact Assessment for Planning' by AWN Consulting Limited (specifically Figure 7) as included in this planning submission.

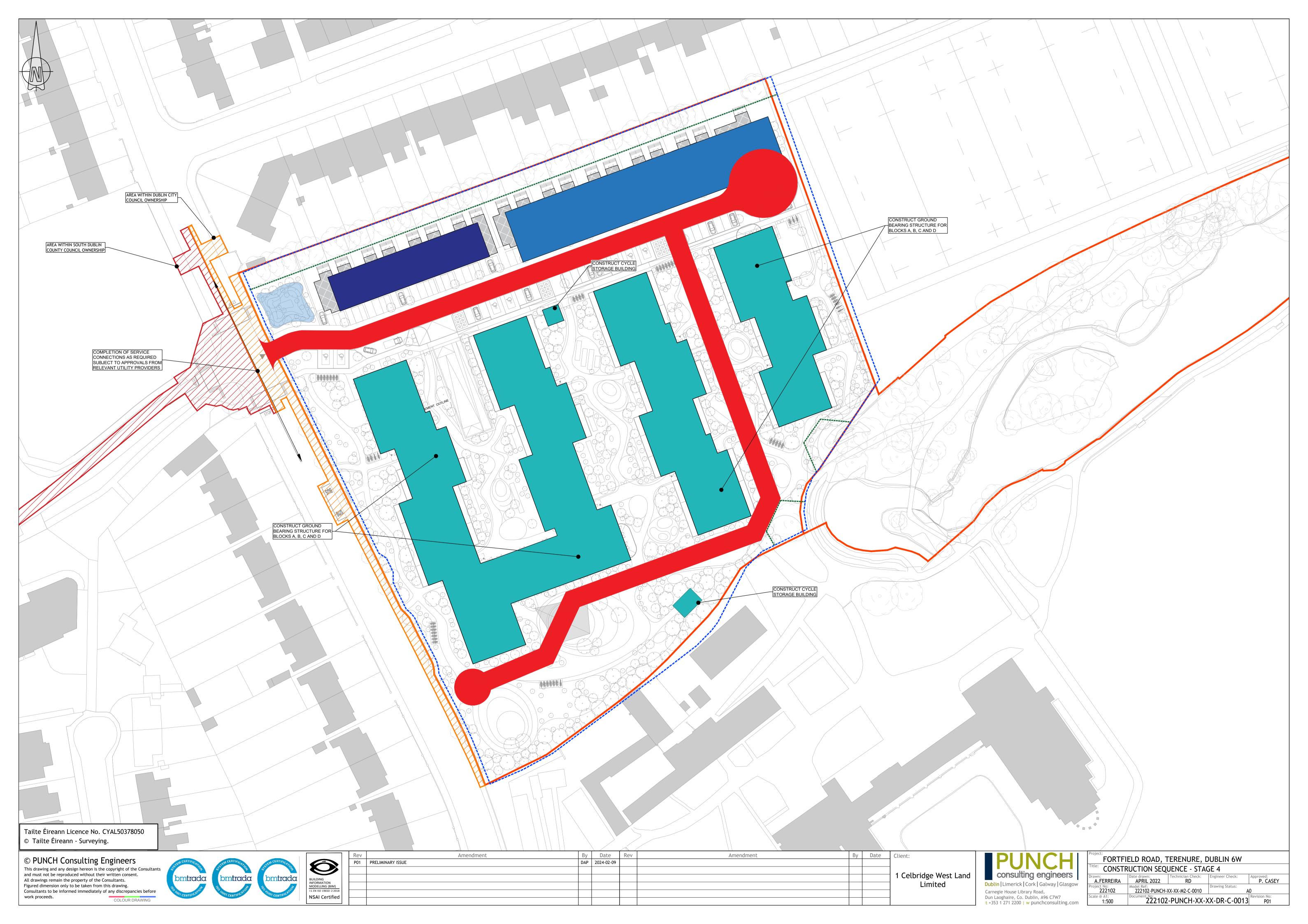
For more details please refer to the 'Outline Resource & Waste Management Plan' prepared and included in the planning submission.

15 Lighting

There are no proposals to alter the existing lighting arrangements in the area. It is not envisaged that any existing public lighting will need to be disconnected as a result of the proposed works. Appropriate lighting will be provided as necessary at construction compounds. All lighting will be installed so as to minimise light spillage from the site.


16 Construction Employment


Construction employment numbers will vary depending on the construction stage of the project and the actual approach adopted by the Contractor. However, it is anticipated that at the peak of construction there may be a workforce of approximately 150 people employed (maximum).



Appendix A Outline Construction Sequence

Appendix B Waste Characterisation Report

T: 021 434 5366 E:admin@ocallaghanmoran.com www.ocallaghanmoran.com

Waste Characterisation Assessment

Fortfield Road,

Terenure,

Dublin 6

Prepared For: -

IGSL Limited
Unit F
M7 Business Park
Naas
County Kildare

Prepared By: -

O'Callaghan Moran & Associates Unit 15 Melbourne Business Park Model Farm Road Cork

May 2022

Registration/VAT Number: 8272844U

Project	Waste Characterisation: Fortfield Road, Terenure, Dublin 6										
Client	IGSL Limited										
Report No	Date	Status	Prepared By	Reviewed By							
220012001	23/05/2022	Final	Austin Hynes PGeo MSc	Sean Moran B.Sc. MSc							

Registration/VAT Number: 8272844U

TABLE OF CONTENTS

			<u>PAGE</u>
1	IN	TRODUCTION	1
	1.1	Methodology	1
2	W	ASTE CLASSIFICATION ASSESSMENT	2
	2.1	SOIL SAMPLING AND LABORATORY ANALYSIS	
	2.2	WASTE CLASSIFICATION	2
	2.3	WASTE ACCEPTANCE CRITERIA	5
	2.4	WASTE MANAGEMENT OPTIONS	7
3	CC	DNCLUSIONS AND RECOMMENDATIONS	9
	3.1	CONCLUSIONS	9
	3.2	RECOMMENDATIONS	9

APPENDICES

APPENDIX 1 - Trial Pit and Borehole Logs

APPENDIX 2 - Laboratory Results

APPENDIX 3 - Waste Classification Report

1 INTRODUCTION

IGSL Limited requested O'Callaghan Moran & Associates (OCM) to undertake a waste characterisation assessment of samples of made ground collected from four (4 No.) trial pits and five (5 No.) cable percussion boreholes installed at a site at Fortfield Road, Terenure, Dublin 6.

1.1 Methodology

IGSL provided a description of the ground conditions and collected samples of the soils from the borehole and trial pit locations. The samples were analysed at an accredited laboratory and the results formed the basis for a waste classification assessment, which was undertaken by OCM in accordance with the Environmental Protection Agency (EPA) Guidelines on the Classification of Waste (2015).

2 WASTE CLASSIFICATION ASSESSMENT

2.1 Soil Sampling and Laboratory Analysis

2.1.1 Site Investigation

The site investigation was completed by IGSL Limited in April 2022 and included the collection of nine composite samples from four (4 No.) trial pits and five (5 No.) cable percussion boreholes. The locations are shown on Figure 2.1. The trial pit and borehole logs are in Appendix 1.

The logs indicate the subsurface is composed of Natural Ground. There is topsoil at the surface of all locations. The subsurface is composed of soft to firm sandy slightly gravelly SILT/CLAY to circa 1.00 mbgl. This is underlain by firm to stiff, sandy gravelly CLAY/SILT to between 3.40-3.80 mbgl. The subsurface is composed of stiff to very stiff, sandy gravelly CLAY below 3.80 mbgl.

2.1.2 Sample Collection

IGSL collected the samples and placed them in laboratory prepared containers that were stored in coolers prior to shipment to Chemtest Ltd.

2.1.3 Laboratory Analysis

The samples were tested for, metals (arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc, total organic carbon (TOC), BTEX (benzene, toluene, ethylbenzene and xylene) aliphatic and aromatic hydrocarbons, polychlorinated biphenyls (PCB), mineral oil, polyaromatic hydrocarbons (PAH) and asbestos. Leachate generated from the samples was tested for arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, antimony, selenium and zinc, chloride, fluoride, soluble sulphate, phenols, dissolved organic carbon (DOC), total dissolved solids (TDS).

This parameter range facilitates an assessment of the hazardous properties of the waste, and also allows a determination of appropriate off-site management options based on the Waste Acceptance Criteria (WAC) applied by landfill operators.

The analytical methods were all ISO/CEN approved and the method detection limits were below the relevant guidance/threshold values. The full laboratory report is in Appendix 2.

2.2 Waste Classification

The Haz Waste Online Classification Engine, developed in the UK by One Touch Data Ltd, was used to determine the waste classification. This tool was developed specifically to establish

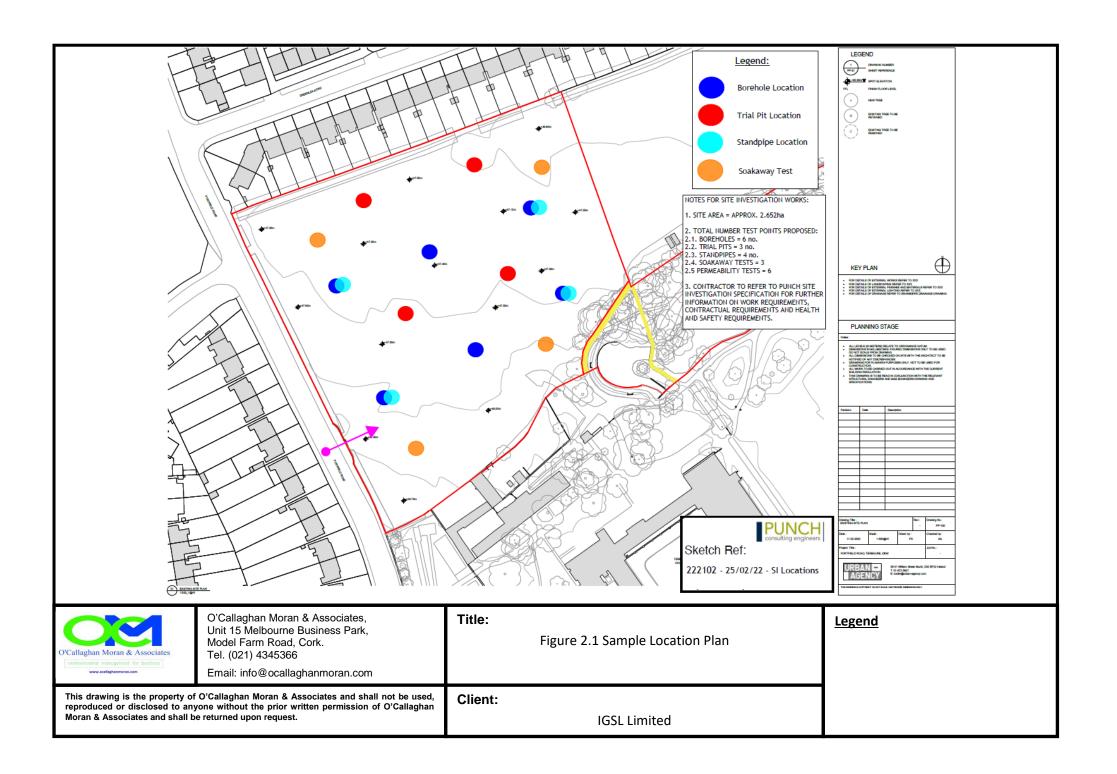

whether waste is non-hazardous or hazardous and has been approved for use in Ireland by the Environmental Protection Agency. The full Waste Classification Report is in Appendix 3 and the results are summarised in Table 2.1.

Table 2.1 Waste Classification

Ciassilica	ition						
Sample No.	Depth	Classification	LoW Code				
BH01	1.0	Non-Hazardous	17 05 04				
BH03	1.0	Non-Hazardous	17 05 04				
BH04	2.0	Non-Hazardous	17 05 04				
BH05	2.0	Non-Hazardous	17 05 04				
BH06	1.0	Non-Hazardous	17 05 04				
TP01	0.70	Non-Hazardous	17 05 04				
TP02	1.0	Non-Hazardous	17 05 04				
TP03	0.80	Non-Hazardous	17 05 04				
TP04	0.50	Non-Hazardous	17 05 04				

Asbestos was not detected in any of the samples tested.

All samples are classified as non-hazardous and the appropriate List of Waste Code is 17 05 04 (Soil and Stone other than those mentioned in 17 05 03*).

2.3 Waste Acceptance Criteria

The results of the WAC testing are presented in Table 2.2, which includes for comparative purposes the WAC for Inert, Non Hazardous and Hazardous Waste Landfills pursuant to Article 16 of the EU Landfill Directive 1999/31/EC Annex II which establishes criteria and procedures for the acceptance of waste at landfills.

All samples meet the inert WAC.

Table 2.2 WAC Results

Parameter	Unit	BH01	вноз	вн04	вн05	вно6	TP01	TP02	TP03	TP04	Inert Landfill	Inert Landfill Increased Limits	Non- Hazardous Landfill	Hazardous Landfill
Depth	m	1.0	1.0	2.0	2.0	1.0	0.70	1.0	0.80	0.50				
Antimony	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.18	0.7	5
Arsenic	mg/kg	< 0.0002	0.0064	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0064	0.5	1.5	2	25
Barium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	20	20	100	300
Cadmium	mg/kg	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	0.04	1	5
Chromium	mg/kg	0.0065	0.0078	0.0052	0.013	0.0069	0.0053	0.0057	0.0056	0.0087	0.5	0.5	10	70
Copper	mg/kg	0.010	0.021	0.0073	0.0095	0.011	0.012	0.0082	0.011	0.017	2	2	50	100
Lead	mg/kg	< 0.0005	0.0055	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0050	0.5	0.5	10	50
Molybdenum	mg/kg	0.080	0.031	0.10	0.079	0.077	0.023	0.052	0.064	0.026	0.5	1.5	10	30
Nickel	mg/kg	0.0052	0.0089	< 0.0005	< 0.0005	< 0.0005	0.0054	< 0.0005	< 0.0005	0.0085	0.4	0.4	10	40
Selenium	mg/kg	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.3	0.5	7
Zinc	mg/kg	< 0.003	< 0.003	< 0.003	0.036	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	4	4	50	200
Mercury	mg/kg	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.01	0.2	2
Phenol	mg/kg	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	1	1	NE	NE
Fluoride	mg/kg	3.7	3.6	2.5	2.4	4.1	5.8	3.5	3.6	4.7	10	10	150	500
Chloride	mg/kg	< 10	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	800	2,400	15,000	25,000
Sulphate	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	1000*	3,000	20000*	50,000
DOC **	mg/kg	60	< 50	< 50	99	65	< 50	< 50	60	52	500	500	800	1,000
рН	pH units	9.1	8.8	8.9	8.8	8.6	8.6	9.0	8.8	8.8	NE	NE	NE	NE
TDS ***	mg/kg	710	580	580	580	580	710	580	650	780	4,000	12,000	60,000	100,000
TOC	%	0.46	0.93	0.47	0.33	0.42	0.85	0.44	0.54	0.74	3	6	NE	6
Benzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Toluene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
Ethylbenzene	mg/kg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
m/p-Xylene	mg/kg	0.0032	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
o-Xylene	mg/kg	0.0021	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	6	6	NE	NE
PCB Total of 7	mg/kg	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	1	1	NE	NE
Total 17 PAH's	mg/kg	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	NE	100	NE	NE
Mineral Oil	mg/kg	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	500	500	NE	NE
Asbestos	% mass	NAD	NE	NE	NE	NE								

NAD denotes No Asbestos Detected

PAH over 1mg/kg and Mineral Oil over 50 mg/kg exceeds limit at soil recovery site in Ireland

^{*} denotes sulphate level exceeding inert waste limit may be considered as complying if the TDS value does not exceed 6,000mg/kg at L/S = 10l/kg.

^{**} denotes a higher limit may be accepted provided the DOC alternative values of 500mg/kg is achieved

^{***} denotes TDS. The values for TDS can be used to sulphate and chloride.

2.4 Waste Management Options

The EPA has issued guidance on acceptance criteria for a range of parameters for soil recovery sites. This includes;

- Metals (solid concentration not leachability) in soil and stone (including As, Cd, Cr, Cu, Hg, Ni, Pb, Zn);
- Total organic carbon in soil and stone;
- Total BTEX (benzene, toluene, ethylbenzene, xylenes) in soil and stone;
- Mineral oil in soil and stone;
- Polycyclic aromatic hydrocarbons (PAHs) in soil and stone;
- Polychlorinated Biphenyls (PCBs) in soil and stone;
- Asbestos fibres in soil and stone.

The guidance requires that soils from brownfield sites should not exceed the limits for the parameters specified in Table 2.3 and 2.4. For metals limits have been specified for a range of soil types nationally separated into six domain areas.

Table 2.3 Soil Recovery Site Criteria

Parameter	Limit for Soil Recovery Sites
Total BTEX	0.05 mg/kg
Mineral oil	50 mg/kg
Total PAHs	1 mg/kg
Total PCBs	0.05 mg/kg

All samples meet the soil recovery criteria.

The soil and stone cannot be sent to soil recovery sites if the trigger levels for a particular domain are exceeded. There is however some flexibility in applying the limits. A derogation applies where up to three parameters can exceed the limit for a sample provided the concentration in the samples is no more than 1.5 times the trigger level. The site which is subject to this investigation is located in Domain 2 and the trigger levels are listed in Table 2.5.

Table 2.4 Soil Recovery Trigger Levels

		Domain 2 Trigger Level	1.5 times Trigger Level
Arsenic	mg/kg	24.90	37.35
Cadmium	mg/kg	3.28	4.92
Chromium	mg/kg	50.30	75.45
Copper	mg/kg	63.50	95.25
Mercury	mg/kg	0.36	0.54
Nickel	mg/kg	61.90	92.85
Lead	mg/kg	86.10	129.15
Zinc	mg/kg	197.00	295.5

All samples meet the soil recovery criteria for metal concentrations.

Waste management options are summarised on Table 2.5. All are subject to approval of the waste management facility operators. Class A material is suitable for removal to a soil recovery facility.

Table 2.5 Waste Management Options

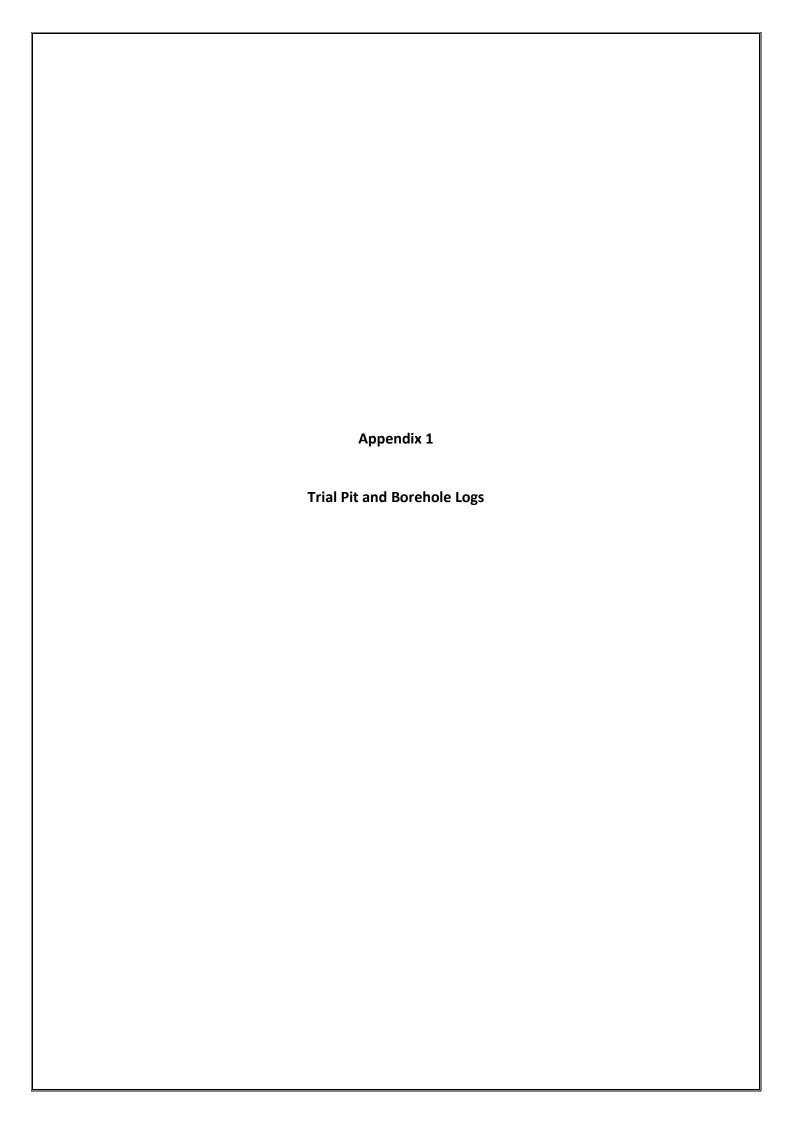
abic 2.5 V	aste iviali	agement Options		
Sample No.	Depth	Classification	LoW Code	Category
BH01	1.0	Non-Hazardous	17 05 04	Α
BH03	1.0	Non-Hazardous	17 05 04	Α
BH04	2.0	Non-Hazardous	17 05 04	Α
BH05	2.0	Non-Hazardous	17 05 04	Α
BH06	1.0	Non-Hazardous	17 05 04	Α
TP01	0.70	Non-Hazardous	17 05 04	Α
TP02	1.0	Non-Hazardous	17 05 04	Α
TP03	0.80	Non-Hazardous	17 05 04	Α
TP04	0.50	Non-Hazardous	17 05 04	Α

A Suitable for Soil Recovery

3 CONCLUSIONS AND RECOMMENDATIONS

3.1 Conclusions

3.1.1 Waste Classification


Asbestos was not detected in any of the samples tested.

All samples are classified as non-hazardous and the appropriate List of Waste Code is 17 05 04 (Soil and Stone other than those mentioned in 17 05 03*).

The recovery/disposal options are discussed in Section 2.4.

3.2 Recommendations

OCM recommend that a copy of this report be provided in full to the relevant waste management facilities to which the made ground and subsoils will be consigned to confirm its suitability for acceptance.

GEOTECHNICAL BORING RECORD

REPORT NUMBER

24013

POORDINATION OF THE PROPERTY O				DLE DIAMET	ΓFR (m		Dando 20 200		DATE CO	MENCI	ED 14/04/2022	
NGINEER	Lioncor	GROUND LEVEL (mOD)					5.10		DATE COMMENCED 14/04/2022 DATE COMPLETED 14/04/2022			
	D –		-	MMER REF.	_				BORED BY W.Cahill			
,	Punch C.E		ENERGY	∕ RATIO (%) │					PROCESSED BY F.C mples			Т
				_	٦.	Œ			<u>. </u>	2	Field Teet	je
	De	escription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe
		SILT/CLAY with occ	asional	<u></u>								
fine grave	el											
Soft to fir	m light brown s	andy SILT/CLAY w	ith some	×— —		0.80	-				N 44	
gravel	J	•					AA175560	В	1.00		N = 11 (2, 3, 3, 2, 3, 3)	
				×								
				X_							N = 7	
				<u>x</u>			AA175561	В	2.00		(3, 3, 2, 2, 1, 2)	
							AA175562	В	2.00		N = 16	
				<u>×</u>			AA1/0562	В	3.00		(4, 4, 3, 4, 5, 4)	
Madium	dense to dense	grey fine to carse s	sandy	° 0 0 0 0		3.60						
silty/claye	ey GRAVEL	grey line to carse s	sariuy	0-0:00			AA175563	В	4.00		N = 30	
				0000					4.00		(4, 5, 5, 7, 8, 10)	
				0-0-0-0			AA175564	В	5.00		N = 28	
				10 m							(5, 6, 6, 6, 7, 9)	
				60 ≈0 a								
				0 0 0 0		6.10					N = 50/150 mm (7, 8, 17, 33)	
Obstructi End of Bo	ruction of Borehole at 6.10 m										(1, 0, 11, 33)	
	TA BORING/CH			Water	Car	sing S	Sealed	Ris	e Tin	10	TER STRIKE DET	AIL
om (m) To (4.50 4. 8	(h)	Comments		Strike		pth	At	To			omments	
4.50											No water strike	
										GRO	UNDWATER PRO	GRI
STALLATIO	N DETAILS			Date		Hole Depth	Casing Depth	De W	pth to c	ommen		
Date Ti	p Depth RZ To	p RZ Base	Туре									
	<u> </u>	id 19 Dafe Working	Aroo CAT	acconned			<u> </u>					
MARKS 11	nr Frectina Cav					Camn	le Legeno Disturbed (tub) Disturbed	d				

GEOTECHNICAL BORING RECORD

REPORT NUMBER

24013

COI	NTRAC	T Fo	rtfield Roa	d , Terenur	e , Dublin 6							BOREH SHEET	IOLE N	Ο.	BH02 Sheet 1 of 1	
CO-	ORDIN	IATES				IG TYP		ETED (m		Dando 20 200	00		OMMF	NCF	ED 13/04/2022	
GR	OUND	LEVEL (r	nOD))LE DIAME)LE DEPTI			200 4.20					D 13/04/2022	
	ENT		ncor				MER REF					BORED BY			W.Cahill	
ENC	SINEER	l Pu	nch C.E		E	NERGY	RATIO (%	6)				PROCE	SSED	BY	F.C	1
Depth (m)			De	scription			Legend	Elevation	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	20000	Field Test Results	Standpipe Details
0	Soft o	Soft dark brown sandy SILT/CLAY							0.80							
1	Firm to stiff dark brown/grey sandy SILT/CLAY with occasional gravel						X			AA175549	В	1.00			N = 10 (2, 2, 3, 2, 3, 2)	
2										AA175550	В	2.00			N = 31 (4, 6, 6, 8, 8, 9)	
3	Stiff to very stiff black sandy gravelly silty CLAY with								3.50	AA175551	В	3.00			N = 33 (5, 6, 6, 7, 9, 11)	
- - - 4	Obstr	uction	obles and	small bould	lers		######################################		4.20	AA175552	В	4.00			N = 50/150 mm (10, 15, 24, 26)	
- 5 - 5 																
7																
8																
9																
HA	RD ST	RATA BO	DRING/CH	SELLING			10/-1-	r 0-	oina	Coclod	D:-	, , , ,		WA	TER STRIKE DET	AILS
		To (m)	(n)	Comments			Wate Strike	e De	sing epth	Sealed At	Rise To		Γime min)	Со	mments	
	2.20 2.60 1 4.00 4.20 1.5												lo water strike			
									Holo	Casina	D-	ath to	G	RO	UNDWATER PRO	GRESS
	TALLA Date	TION DE		p RZ Base	Туре		Date		Hole Depth	Casing Depth	Der W	oth to ater	Comm	nents	s	
REM	MARKS	1hr Ere	ecting Cov n and hand	d 19 Dafe \ d dug inspe	Working Area	a . CAT e carried	scanned d out .		B - Bulk I LB - Lard	DIE Legen I Disturbed (tub) Disturbed ge Bulk Disturbe vironmental San	d	· Vial + Tub)	Sai P -	mple Undist	isturbed 100mm Diameter turbed Piston Sample er Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

24013

BOREHOLE NO. BH03 CONTRACT Fortfield Road, Terenure, Dublin 6 SHEET Sheet 1 of 1 Dando 2000 **RIG TYPE CO-ORDINATES DATE COMMENCED** 13/04/2022 **BOREHOLE DIAMETER (mm)** 200 **BOREHOLE DEPTH (m)** 4.00 **GROUND LEVEL (mOD) DATE COMPLETED** 13/04/2022 SPT HAMMER REF. NO. **BORED BY** W.Cahill **CLIENT** Lioncor **ENERGY RATIO (%) ENGINEER PROCESSED BY** Punch C.E F.C Samples Standpipe Details Ξ $\widehat{\Xi}$ Elevation Ref. Number Sample Type Recovery Field Test Legend Depth (Depth (Description Depth (m) Results Soft dark brown sandy SILT/CLAY with occasional -X0 gravel F₁ N = 6(1, 2, 1, 2, 2, 1) AA175553 1.00 ð 1.60 Stiff to very stiff dark brown sandy silty gravelly CLAY with occasional cobbles and small boulders N = 7 (2, 2, 1, 2, 2, 2) AA175554 В 2.00 -2 N = 35 (4, 9, 11, 11, 1, 12) AA175555 3 В 3.00 N = 50/150 mm AA175556 В 4.00 4 (22, 3, 39, 11)N = 33 (8, 7, 6, 7, 10, 10) AA175557 В 5.00 -5 <u>5.9</u>0 N = 52/75 mm (25, 52) Obstruction F 6 End of Borehole at 4.00 m 8 9 HARD STRATA BORING/CHISELLING WATER STRIKE DETAILS Water Casing Sealed Rise Time Time From (m) To (m) Comments Comments (h) Strike Depth At То (min) 4.00 3.80 1 24013.GPJ IGSL.GDT 21/4/22 No water strike 1.5 5.70 5.90 **GROUNDWATER PROGRESS** Hole Casing Depth to Water **INSTALLATION DETAILS** Date Comments Depth Depth Date Tip Depth RZ Top RZ Base Туре 500 REMARKS 1hr Erecting Covid 19 Dafe Working Area . CAT scanned Sample Legend ВН D - Small Disturbed (tub)
B - Bulk Disturbed
LB - Large Bulk Disturbed
Env - Environmental Sample (Jar + Vial + Tub) location and hand dug inspection pit were carried out . Sample P - Undisturbed Piston Sample IGSL W - Water Sample

GEOTECHNICAL BORING RECORD

REPORT NUMBER

	NTRAC		tfield Roa	d , Terenure	e , Dublin 6	PE			Dando 20	000	BOREH SHEET		Sheet 1 of 1	
		LEVEL (n	nOD)			IOLE DIAN		(mm)	200 5.80				ICED 14/04/2022 TED 14/04/2022	
	ENT SINEER		ncor nch C.E		-	MMER RE	_				BORED PROCES		W.Cahill BY F.C	
					,					Sam	ples			_
Depth (m)			De	scription		Legend	(i-t)	Depth (m)	Ref. Number	Sample Type	Depth (m)	Recovery	Field Test Results	Standpipe Details
0	Dark	brown sa	ndy SILT/	CLAY			-	0.50						
	Soft I		n sandy S	ILT/CLAY w	ith occasional	-XO	-	0.90						
1	Firm	o stiff da sional cob	rk brown s obles	sandy grave	ly silty CLAY with		1 14 131 1 1 4		AA175565	В	1.00		N = 7 (2, 2, 2, 1, 2, 2)	
2							-)		AA175566	В	2.00		N = 7 (1, 2, 2, 1, 2, 2)	
3						× - (AA175567	В	3.00		N = 20 (3, 4, 4, 5, 5, 6)	
4	Stiff to very stiff light brown very gravelly sandy with some cobbles and occasional small boulded						- - - - - - - - -	4.20	AA175568	В	4.00		N = 49 (8, 10, 10, 11, 13, 15)	
5								5.80	AA175569	В	5.00		N = 50/150 mm (10, 17, 23, 27)	
7		uction If Boreho	le at 5.80	m				0.00					N = 250/75 mm (25, 250)	
8														
9														
ΗA	RD ST	RATA BO	DRING/CH	ISELLING									 VATER STRIKE DET	L AILS
		To (m)	Time (h)	Comments		Wat Stril		asing Depth	Sealed At	Rise To		ime	Comments	
	.40 4.80 1 .60 5.80 1.5					Juli		Jopui	rst.			()	No water strike	
								11-1-			- d 1	GF	ROUNDWATER PRO	GRES
Date Tip Depth RZ Top RZ Base Type					Da	ate	Hole Depth	Casing Depth	Der W	oth to ater	Comme	ents		
REI	MARKS	1hr Ere	ecting Cov	id 19 Dafe V d dug insped	Vorking Area . CA ction pit were carri	T scanned ed out .		D - Sma B - Bulk LB - Lar	DIE Legen Il Disturbed (tub) Disturbed ge Bulk Disturbe ivironmental Sar	d :d	- Vial + Tub)	Sam P - U	Undisturbed 100mm Diameter ple Indisturbed Piston Sample Water Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

CO	NTRAC	T Fort	field Road	, Terenure	, Dublin 6						BOREH SHEET	OLE NO	D. BH05 Sheet 1 of 1	
CO	-ORDIN	ATES			RIG TY	PE IOLE DIAMET	TFR (m		Dando 20 200	00		OMMEN	CED 19/04/2022	
GR	OUND L	.EVEL (m	OD)			OLE DEPTH	•	•	5.30				TED 19/04/2022	
	ENT GINEER	Lior Pun	ncor ch C.E			AMMER REF. SY RATIO (%)					BORED PROCE	BY SSED B	W.Cahill Y F.C	
Depth (m)			Des	cription		Legend	Elevation	Depth (m)	Ref. Number	Sample Type	ples Depth (m)	Recovery	Field Test Results	Standpipe Details
1	gravel Soft to	d brown	-	ndy SILT/C	occasional LAY with some			0.20	AA175570		1.00		N = 5 (2, 2, 1, 1, 2, 1) N = 10 (2, 2, 3, 2, 2, 3)	
- 4	Very s some	tiff grey/b	olack sandy and occasio	very grave onal small b	elly CLAY with couldersa			3.80	AA175572 — AA175573		4.00		N = 19 (3, 3, 4, 4, 5, 6) N = 44/75 mm (23, 2, 44)	
5 5 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Obstru End o		e at 5.30 m	·				5.30	AA175574	В	5.00		N = 40 (5, 6, 8, 11, 9, 12)	
		RD STRATA BORING/CHISELLING n (m) To (m) Time Comments				Water Strike	Cas	sing	Sealed	Ris	е Т	Timo	ATER STRIKE DET Comments	AILS
3.	3.90 4.10 1 5.20 5.30 1.5						De		At 3.90	3.00	-	20	Slow	
								Hole	Casing	De	nth to		OUNDWATER PRO	GRES
	Date	Tip Dep	TAILS th RZ Top	RZ Base	Туре	Date		Hole Depth	Depth	W	pth to ater	Comme	ents	
REI	MARKS	1hr Erection	cting Covid and hand	19 Dafe W dug inspec	orking Area . CA tion pit were carri	T scanned ed out .		B - Bulk D	DIE Legeno Disturbed (tub) Disturbed Je Bulk Disturbed vironmental Sam	d	+ Vial + Tub)	Samp P - Ur	Undisturbed 100mm Diameter ole ndisturbed Piston Sample Vater Sample	

GEOTECHNICAL BORING RECORD

REPORT NUMBER

CO	NTRAC	T Fo	rtfield Ro	oad,	Terenure	, Dublin 6	6							BOREH SHEET	OLE N	Ο.	BH06 Sheet 1 of 1	
CO-	-ORDIN	IATES					RIG TYP	PE OLE DIAM	ETER) (mr		Dando 20	00		OMMFI	NCF	ED 19/04/2022	
GR	OUND	LEVEL (ı	mOD)					OLE DEPT				5.40					D 19/04/2022	
	ENT		oncor					MMER RE).				BORED			W.Cahill	
ENC	SINEER	l Pu	nch C.E				ENERGY	Y RATIO (⁹	%) 					PROCE	SSED	BY	F.C	
Depth (m)			С	escri)	ption			Legend		Elevation	Depth (m)	Ref. Number	Sample Type	· -	Recovery		Field Test Results	Standpipe Details
0	TOPS							7/1/			0.30							
· [grave	I	•			ccasional	_	X	-		0.70							
1	grave	l and oc	casional	cobbl	les	ZEAT WILL	Some					AA171709	В	1.00			N = 12 (2, 2, 3, 2, 3, 4)	
2												AA171710	В	2.00			N = 24 (4, 3, 5, 6, 6, 7)	
3	C+;#f +	O VODA CE	iff dark b	rows	eandy sil	ty gravelly	, CL AV				3.40	AA171711	В	3.00			N = 32 (8, 7, 5, 8, 10, 9)	
4	with o	occasion	al cobble	S	sanuy SII	ily gravelly	CLAT				4.50	AA171712	В	4.00			N = 40 (10, 14, 11, 11, 8, 10)	
5	Very stiff to hard grey/black sandy gravelly CLAY was some cobbles and occasional small boulders					AY with		-			AA171713	В	5.00			N = 75 (10, 17, 18, 21, 11, 25)		
6											6.40	AA171714	В	6.00			N = 75/225 mm (16, 17, 32, 18, 25)	
7		uction of Boreho	ole at 6.4	0 m														
8																		
9																		
			ORING/C	HISE	LLING			Wate	or	Cas	ing c	Sealed	Rise		ime	WA	TER STRIKE DETA	AILS
3.	n (m) .60 .30	(h) (confinents) (h) Confinents				Strik		Dep		At	To		nin)		omments No water strike			
	.20	6.40	1.5															
IN IC	TAI: -	TION ST	TA!! 0						to.	H	lole	Casing	Dei	oth to			UNDWATER PRO	GRESS
	Date	TION DE	pth RZ	op F	RZ Base	Тур	ре	Da	te		epth	Depth	Ĭ	oth to ater	Comm	ent	IS	
REI	MARKS	1hr Ero locatio	ecting Co n and ha	ovid 1 nd du	9 Dafe V ug insped	Vorking Ar	rea . CAT ere carrie	scanned out .			B - Bulk D LB - Large	e Legeno Disturbed (tub) isturbed Bulk Disturbed ronmental Sam	t	- Vial + Tub)	Sar P -	mple Undis	disturbed 100mm Diameter sturbed Piston Sample er Sample	

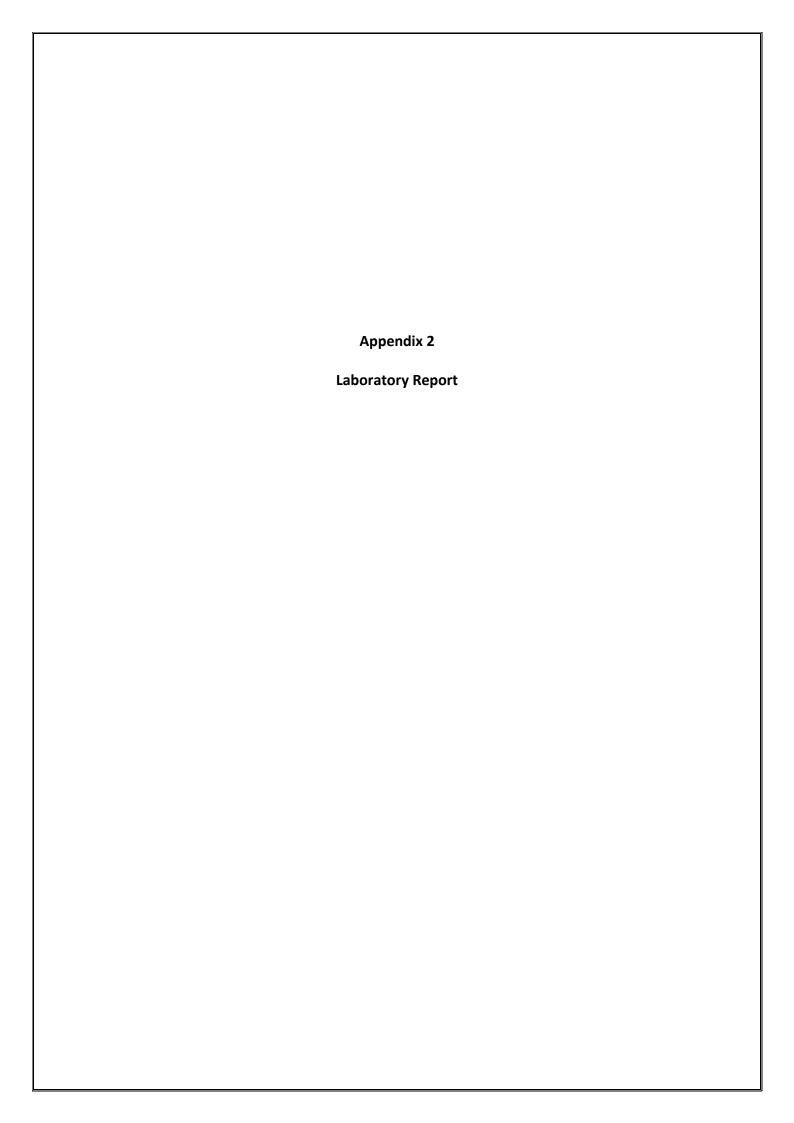
REPORT NUMBER

24013

CON	TRACT	Fortfield Road , Terer	TRIAL P	IT NO.	TP0) 1 et 1 of 1							
LOG	GED BY	I.Reder		CO-ORDINAT					DATE S	TARTED OMPLETI	14/0	4/2022 4/2022	
CLIE	NT NEER	Lioncor Punch C.E		GROUND LEV	/EL (m)				EXCAVA METHOI	ATION O	JCB		
										Samples)a)	meter
		Geotechnical I	Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	IL			7 7 7 7								
- -		own, slightly sandy sligh			 	0.30							
- - -	with high	stiff, greyish brown, slig h subangular to subrou	intly sandy gra nded cobbles	avelly CLAY s content					AA163096	s В	0.70		
- 1.0 	Firm to s with high content	stiff, greyish brown, slig h subangular to subrou	htly sandy granded cobbles	avelly CLAY and boulders		1.10							
2.0	Soft to fi	irm, greyish brown, san	dy gravelly C	LAY with high		2.10		(Seepage)	AA163097	'В	1.70		
- - - -	Firm to s	ular cobbles content stiff, greyish brown, slig h subangular to subrou s content	avelly CLAY and low		2.40			AA163098	в В	2.70			
3.0	End of T	Frial Pit at 3.00m				3.00							
4.0													
- - -													
	ndwater (age flow	Conditions at 2.1m											
Stabi TP st													
Gene	ral Rema	rks											
Stabi TP st													

REPORT NUMBER

IGSL	IRIALP	II RECO	עאי					24	013	
CONTRACT Fortfield Road ,	, Terenure , Dublin 6					TRIAL P	IT NO.	TP0)2 et 1 of 1	
LOGGED BY I.Reder	CO-ORDI	NATES				DATE ST			4/2022 4/2022	
CLIENT Lioncor ENGINEER Punch C.E	GROUND	LEVEL (m)				EXCAVA METHOL	ATION	JCB		
							Samples	8	oa)	meter
Geotech	nical Description	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
Firm to stiff, greyish brow with high subangular to s	ly sandu slightly gravelly CLA\ n, slightly sandy gravelly CLA\ ubrounded cobbles and bould		0.40							
content						AA163099		1.00		
Stoff to very stiff, grey, sli	ightly sandy gravelly CLAY wit unded cobbles and boulders		2.40			AA163100	В	2.00		
End of Trial Pit at 3.00m			3.00			AA173101	В	3.00		
- 4.0 										
Groundwater Conditions TP dry										
ury										
Stability TP stable										
Stability TP stable General Remarks										


REPORT NUMBER

	esl/								24	013	
CON	TRACT Fortfield Road , Terenure , Dublin	6					TRIAL P	IT NO.	TPO		
		CO-ORDINAT	ES				DATE ST	TARTED		et 1 of 1 4/2022	
LOG	GED BY I.Reder						DATE C			4/2022	
CLIE	INT Lioncor	GROUND LE	VEL (m)				EXCAVA METHOI		JCB		
								Sample	S		əter
						Φ				KPa.	trom
	Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer
0.0	TOPSOIL		7 7 1 7								
	Firm, brown, slightly sandy slightly gravelly (CLAY	0	0.30							
	Firm to stiff, greyish brown, slightly sandy gr	avelly CLAY	9	0.50							
	with high subangular to subrounded cobbles	s content									
1.0			3				AA173103	В	0.80		
1.0											
			\$ - <u>*</u>								
	Firm to stiff, greyish brown, slightly sandy gr with high subangular to subrounded cobbles	avelly CLAY		1.50							
	content	s and boulders					AA173104	В	1.80		
2.0							AA173104		1.00		
	TP terminated due to many big boulders		- 9	2.40							
	End of Trial Pit at 2.40m										
3.0											
4.0											
Gro υ ΓΡ d	ındwater Conditions ry										
Stab TP s	ility table										
3ene	eral Remarks										
TP te	erminated at 2.4m due to big boulders										

REPORT NUMBER

CON	TRACT	Fortfield Road , Teren	TRIAL P	IT NO.	TP0	4 et 1 of 1							
LOG	GED BY	I.Reder		CO-ORDINAT					DATE S	TARTED OMPLETI	14/04 E D 14/04	4/2022 4/2022	
CLIE ENGI	NT NEER	Lioncor Punch C.E		GROUND LEV	/EL (M)				EXCAVA METHO		JCB		
										Samples		a)	neter
		Geotechnical D	Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Туре	Depth	Vane Test (KPa)	Hand Penetrometer (KPa)
0.0	TOPSO	IL			7 7 7 7	0.00							
-		own, slightly sandy slight				0.30			AA173106	6 В	0.50		
1.0	with hig gravel le	eyish brown, slightly sar h subangular cobbles lo enses content	relly CLAY and sandy					AA173107	' В	1.50			
2.0	Soft to f high sub boulders	irm, greyish brown, sand pangular to subrounded s content	dy very grave cobbles and	elly CLAY with medium		2.00		(Seepage)					
3.0	End of 1	Trial Pit at 3.00m				3.00		(Slow)	AA173108	8 B	2.50		
4.0													
-													
Seep	page flow	Conditions at 2.0m; slow water flow	v at 2.8m										
Stab i TP u	i lity nstable fr	om 2.0m											
Gene	eral Rema	ırks											

Eurofins Chemtest Ltd
Depot Road
Newmarket
CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-16335-1

Initial Date of Issue: 11-May-2022

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): John Clancy

Project

24013 Fortfield Rd Terenure (Punch)

Quotation No.: Q20-19951 Date Received: 04-May-2022

Order No.: Date Instructed: 04-May-2022

No. of Samples: 7

Turnaround (Wkdays): 7 Results Due: 12-May-2022

Date Approved: 11-May-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Leachate

Client: IGSL			Che	mtest Jo	ob No.:	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335
Quotation No.: Q20-19951			Chemte	st Sam	ple ID.:	1421621	1421622	1421623	1421624	1421625	1421626	1421627
Order No.:			Clie	nt Samp	le Ref.:	AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106
			Sa	ample Lo	ocation:	BH01	BH03	BH04	TP01	TP02	TP03	TP04
				Sampl	е Туре:	SOIL						
				Top Dep	oth (m):	1.0	1.0	2.0	0.70	1.0	0.80	0.50
Determinand	Accred.	SOP	Type	Units	LOD							
рН	U	1010	10:1		N/A	8.4	8.5	8.6	8.5	8.5	8.5	8.5
Ammonium	U	1220	10:1	mg/l	0.050	0.12	0.055	0.098	0.10	0.078	0.081	< 0.050
Ammonium	N	1220	10:1	mg/kg	0.10	1.4	0.64	1.2	1.2	0.92	0.95	0.57
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	< 0.01	< 0.01	0.12	0.12	< 0.01	0.12	0.13
Benzo[j]fluoranthene	N	1800	10:1	μg/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Client: IGSL				Job No.:	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335
Quotation No.: Q20-19951		Chem	test San	nple ID.:	1421621	1421622	1421623	1421624	1421625	1421626	1421627
Order No.:				ple Ref.:	AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106
		5	Sample I	_ocation:	BH01	BH03	BH04	TP01	TP02	TP03	TP04
			Samp	ole Type:	SOIL						
			Top De	epth (m):	1.0	1.0	2.0	0.70	1.0	0.80	0.50
			Asbes	stos Lab:	DURHAM						
Determinand	Accred.	SOP	Units	LOD							
ACM Type	U	2192		N/A	ı	-	-	1	-	-	-
Asbestos Identification	U	2192		N/A	No Asbestos						
Aspestos identification	U U	2192		IV/A	Detected						
Moisture	N	2030	%	0.020	12	15	11	19	12	13	13
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] 0.44	[A] 1.9	[A] 0.43	[A] 23	[A] 0.65	[A] 3.8	[A] 2.0
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] < 1.0	[A] 2.8	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] 1.7
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50	[A] < 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 12	[A] 4.2	[A] 13	[A] 2.4	[A] 16	[A] 9.4	[A] 4.7
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] 0.016	[A] 0.026	[A] < 0.010	[A] 0.055	[A] 0.017	[A] 0.032	[A] 0.026
Arsenic	U	2455	mg/kg	0.5	9.8	7.3	9.3	22	9.4	9.5	7.0
Barium	U	2455	mg/kg	0	50	33	53	140	71	38	37
Cadmium	U	2455	mg/kg	0.10	1.6	0.55	1.6	2.4	1.5	1.4	0.58
Chromium	U	2455	mg/kg	0.5	14	12	16	25	13	13	15
Molybdenum	U	2455	mg/kg	0.5	2.5	0.8	2.7	3.7	2.7	2.2	0.9
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	25	10	25	26	25	21	11
Mercury	Ü	2455	mg/kg	0.05	0.06	0.06	0.05	0.09	0.05	0.05	< 0.05
Nickel	Ü	2455	mg/kg	0.50	37	15	43	56	37	31	16
Lead	Ü	2455	mg/kg	0.50	15	15	17	26	14	15	12
Selenium	Ü	2455	mg/kg	0.25	1.3	0.97	1.5	2.4	1.5	1.2	1.1
Zinc	Ü	2455	mg/kg	0.50	64	51	79	95	72	69	50
Chromium (Trivalent)	N	2490	mg/kg	1.0	14	12	16	25	13	13	15
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C10-C12	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C12-C16	Ü	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0 [A] < 1.0	[A] < 1.0	[A] < 1.0 [A] < 1.0	[A] < 1.0	[A] < 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 1.0 [A] < 5.0	[A] < 1.0 [A] < 5.0	[A] < 1.0 [A] < 5.0	[A] < 1.0 [A] < 5.0	[A] < 1.0 $[A] < 5.0$	[A] < 1.0 [A] < 5.0	[A] < 1.0 [A] < 5.0
Aromatic TPH >C5-C7	N N	2680	mg/kg	1.0	[A] < 5.0 [A] < 1.0	[A] < 5.0 [A] < 1.0	[A] < 5.0 [A] < 1.0	[A] < 5.0 $[A] < 1.0$			
	N N	2680	Ü						[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH > C7-C8	U		mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH > C8-C10	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH > C10-C12	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C12-C16		2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0

Oli 1 100			11	1 - I. NI - I	00.40005	00.40005	00.40005	00.40005	00.40005	00.40005	00.40005
Client: IGSL				Job No.:	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335	22-16335
Quotation No.: Q20-19951				nple ID.:	1421621	1421622	1421623	1421624	1421625	1421626	1421627
Order No.:				ple Ref.:	AA175560	AA175553	AA175566	AA163096	AA163099	AA173103	AA173106
				_ocation:	BH01	BH03	BH04	TP01	TP02	TP03	TP04
				ole Type:	SOIL						
				epth (m):	1.0	1.0	2.0	0.70	1.0	0.80	0.50
				stos Lab:	DURHAM						
Determinand	Accred.	SOP	Units	LOD			FA1 4 0				
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0	[A] < 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10						
Benzene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Toluene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Ethylbenzene	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
m & p-Xylene	U	2760	μg/kg	1.0	[A] 3.2	[A] < 1.0					
o-Xylene	U	2760	μg/kg	1.0	[A] 2.1	[A] < 1.0					
Methyl Tert-Butyl Ether	U	2760	μg/kg	1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0	[A] < 1.0
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Phenanthrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Coronene	N	2800	mg/kg	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010
Total Of 17 PAH's	N	2800	mg/kg	0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20	[A] < 0.20
PCB 28	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 52	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 153	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 138	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
PCB 180	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010	[A] < 0.0010
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				Landfill	Waste Acceptanc	o Critoria
Chemtest Sample ID:	1421621				Lanumi		e Criteria
-	AA175560					Limits	
Sample Ref: Sample ID:	AA175560					Stable, Non- reactive	
	BH01						Hamandawa
Sample Location:	1.0				In ant Maata	hazardous	Hazardous Waste
Top Depth(m):	1.0				Inert Waste	waste in non-	
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.46	3	5	6
Loss On Ignition	2610	U	%	2.7			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		9.1		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.016		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0065	0.5	10	70
Copper	1455	U	0.0010	0.010	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0080	0.080	0.5	10	30
Nickel	1455	U	0.0005	0.0052	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.37	3.7	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.0	60	500	800	1000

Solid Information										
Dry mass of test portion/kg	0.090									
Moisture (%)	12									

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				l on dfill \	Waste Acceptanc	a Critaria
	1421622				Lanunn		e Cilleria
Chemtest Sample ID:	AA175553					Limits	
Sample Ref:	AA170003					Stable, Non-	
Sample ID:	DUIGO					reactive	
Sample Location:	BH03					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	-	•	•			Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.93	3	5	6
Loss On Ignition	2610	U	%	3.4			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.017		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	0.0006	0.0064	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0008	0.0078	0.5	10	70
Copper	1455	U	0.0021	0.021	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0031	0.031	0.5	10	30
Nickel	1455	U	0.0009	0.0089	0.4	10	40
Lead	1455	U	0.0006	0.0055	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.0	10	800	15000	25000
Fluoride	1220	U	0.36	3.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.9	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	15				

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				L andfill \	Waste Acceptanc	o Critoria
Chemtest Sample ID:	1421623				Lanum	Limits	e Criteria
Sample Ref:	AA175566					Stable, Non-	
Sample ID:	AA175500					reactive	
Sample Location:	BH04						Hazardous
_	2.0				In out Monto	hazardous	Hazardous Waste
Top Depth(m):	2.0				Inert Waste	waste in non-	
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:				l .		Landfill	
Determinand	SOP	Accred.	Units		_	_	
Total Organic Carbon	2625	U	%	[A] 0.47	3	5	6
Loss On Ignition	2610	U	%	2.1			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.9		>6	1
Acid Neutralisation Capacity	2015	N	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0052	0.5	10	70
Copper	1455	U	0.0007	0.0073	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.010	0.10	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.25	2.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	2.6	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	11				

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335			1	Landfill	Waste Acceptanc	o Critorio
	1421624				Lanumi	_	e Cilleria
Chemtest Sample ID:	AA163096					Limits	
Sample Ref:	AA 103090					Stable, Non-	
Sample ID:	TDO4					reactive	
Sample Location:	TP01					hazardous	Hazardous
Top Depth(m):	0.70				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	•	•	•			Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.85	3	5	6
Loss On Ignition	2610	U	%	3.8			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0080		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0005	0.0053	0.5	10	70
Copper	1455	U	0.0011	0.012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0023	0.023	0.5	10	30
Nickel	1455	U	0.0005	0.0054	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.58	5.8	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	72	710	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.6	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	19				

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				Landfill	Waste Acceptanc	o Critoria
Chemtest Sample ID:	1421625				Lanumi	Limits	e Criteria
=	AA163099						
Sample Ref: Sample ID:	AA 103099					Stable, Non- reactive	
	TP02						Hamandawa
Sample Location:	1.0				In ant Maata	hazardous	Hazardous Waste
Top Depth(m):	1.0				Inert Waste	waste in non-	
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.44	3	5	6
Loss On Ignition	2610	U	%	2.7			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		9.0		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0057	0.5	10	70
Copper	1455	U	0.0008	0.0082	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0052	0.052	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.35	3.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	Ü	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	3.8	< 50	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	12				

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				Landfill	Waste Acceptanc	o Critoria
Chemtest Sample ID:	1421626				Lanumi	_	e Cilleria
-	AA173103					Limits	
Sample Ref:	AA173103					Stable, Non-	
Sample ID:	TDO2					reactive	Hamandana
Sample Location:	TP03				1	hazardous	Hazardous
Top Depth(m):	0.80				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.54	3	5	6
Loss On Ignition	2610	U	%	3.3			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.022		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	leaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0006	0.0056	0.5	10	70
Copper	1455	U	0.0011	0.011	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0064	0.064	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.36	3.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	65	650	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.0	60	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	13				

Waste Acceptance Criteria

Project: 24013 Fortfield Rd Terenure (Punch)

Chemtest Job No:	22-16335				Landfill	Waste Acceptanc	o Critorio
	1421627				Lanunn	-	e Criteria
Chemtest Sample ID:	AA173106					Limits	
Sample Ref:	AA173106					Stable, Non-	
Sample ID:	TD0.4					reactive	
Sample Location:	TP04					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	•	•	•			Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.74	3	5	6
Loss On Ignition	2610	U	%	3.1			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	-
Acid Neutralisation Capacity	2015	N	mol/kg	0.019		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	0.0006	0.0064	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0009	0.0087	0.5	10	70
Copper	1455	U	0.0017	0.017	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0026	0.026	0.5	10	30
Nickel	1455	U	0.0008	0.0085	0.4	10	40
Lead	1455	U	0.0005	0.0050	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.47	4.7	10	150	500
Sulphate	1220	Ü	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	78	780	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	5.2	52	500	800	1000

Solid Information					
Dry mass of test portion/kg	0.090				
Moisture (%)	13				

Waste Acceptance Criteria

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1421621	AA175560		BH01		А	Amber Glass 250ml
1421621	AA175560		BH01		А	Plastic Tub 500g
1421622	AA175553		BH03		А	Amber Glass 250ml
1421622	AA175553		BH03		А	Plastic Tub 500g
1421623	AA175566		BH04		А	Amber Glass 250ml
1421623	AA175566		BH04		А	Plastic Tub 500g
1421624	AA163096		TP01		А	Amber Glass 250ml
1421624	AA163096		TP01		А	Plastic Tub 500g
1421625	AA163099		TP02		А	Amber Glass 250ml
1421625	AA163099		TP02		А	Plastic Tub 500g
1421626	AA173103		TP03		А	Amber Glass 250ml
1421626	AA173103		TP03		А	Plastic Tub 500g
1421627	AA173106		TP04		А	Amber Glass 250ml
1421627	AA173106		TP04		А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary				
1010	pH Value of Waters	рН	pH Meter				
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter				
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.				
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).				
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation				
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection				
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.				
2010	pH Value of Soils	рН	pH Meter				
2015	Acid Neutralisation Capacity	Acid Reserve	Titration				
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.				
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930				
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES				
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection				
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry				
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.				
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.				
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.				
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.				
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.				
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.				
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID				

Test Methods

SOP	Title	Parameters included	Method summary
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
N	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Τ	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-17076-1

Initial Date of Issue: 18-May-2022

Client IGSL

Client Address: M7 Business Park

Naas

County Kildare

Ireland

Contact(s): John Clancy

Project 24013 Fortfield Road Terenure (Punch

)

Quotation No.: Q20-19951 Date Received: 10-May-2022

Order No.: Date Instructed: 10-May-2022

No. of Samples: 6

Turnaround (Wkdays): 7 Results Due: 18-May-2022

Date Approved: 18-May-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Leachate

Client: IGSL			Che	ob No.:	22-17076	22-17076	
Quotation No.: Q20-19951		(Chemte	st Sam	ple ID.:	1424873	1424874
			Cli	ent Sam	ple ID.:	AA175571	AA171709
			Sa	ample Lo	ocation:	BH05	BH06
				е Туре:	SOIL	SOIL	
				2.0	1.0		
Determinand	Accred.	SOP	Type	Units	LOD		
рН	U	1010	10:1		N/A	8.4	8.7
Ammonium	U	1220	10:1	mg/l	0.050	0.18	0.59
Ammonium	N	1220	10:1	2.1	7.5		
Boron (Dissolved)	U	1455	10:1	< 0.01	< 0.01		
Benzo[j]fluoranthene	N	1800	10:1	μg/l	0.010	< 0.010	< 0.010

Client: IGSL				Job No.:		22-17076	22-17076	22-17076	22-17076	22-17076
Quotation No.: Q20-19951		Chem	test Sar	nple ID.:	1424870	1424871	1424872	1424873	1424874	1424875
		С	lient Sa	mple ID.:	AA175561	AA175554	AA175567	AA175571	AA171709	AA171710
		3		_ocation:	BH01	BH03	BH04	BH05	BH06	BH06
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	2.0	2.0	3.0	2.0	1.0	2.0
			Asbes	stos Lab:				DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A				-	-	
Asbestos Identification	U	2192		N/A				No Asbestos Detected	No Asbestos Detected	
Moisture	N	2030	%	0.020	11	11	13	11	16	9.7
pH (2.5:1)	N	2010		4.0	[A] 8.8	[A] 9.4	[A] 9.0			[A] 9.2
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40				[A] < 0.40	[A] < 0.40	
Magnesium (Water Soluble)	N	2120	g/l	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010			[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	[A] 0.012	[A] 0.047	[A] 0.022			[A] 0.013
Total Sulphur	U	2175	%	0.010	[A] 0.025	[A] 0.023	[A] 0.046			[A] 0.026
Sulphur (Elemental)	U	2180	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Chloride (Water Soluble)	U	2220	g/l	0.010	[A] < 0.010	[A] < 0.010	[A] 0.014			[A] 0.023
Nitrate (Water Soluble)	N	2220	g/l	0.010	< 0.010	< 0.010	< 0.010			< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50				[A] < 0.50	[A] < 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50				[A] 18	[A] 24	
Ammonium (Water Soluble)	U	2220	g/l	0.01	< 0.01	< 0.01	< 0.01			< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] < 0.010	[A] 0.014	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.01
Arsenic	U	2455	mg/kg	0.5				1.4	1.7	
Barium	U	2455	mg/kg	0				8	12	
Cadmium	U	2455	mg/kg	0.10				0.21	0.27	
Chromium	U	2455	mg/kg	0.5				1.9	1.9	
Molybdenum	U	2455	mg/kg	0.5				< 0.5	< 0.5	
Antimony	N	2455	mg/kg	2.0				< 2.0	< 2.0	
Copper	U	2455	mg/kg	0.50				3.2	3.4	
Mercury	U	2455	mg/kg	0.05	-			< 0.05	< 0.05	
Nickel	U	2455	mg/kg	0.50	-			4.2	5.5	
Lead	U)	0.50	-			2.9	2.3	
Selenium	U	2455	mg/kg	0.25				0.25	< 0.25	
Zinc	U	2455	mg/kg	0.50				11	9.1	
Chromium (Trivalent)	N		mg/kg	1.0				1.9	1.9	
Chromium (Hexavalent)	N	2490	mg/kg	0.50				< 0.50	< 0.50	
Mineral Oil (TPH Calculation)	N		mg/kg	10				< 10	< 10	
Aliphatic TPH >C5-C6	N	2680	0 0	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C6-C8	N	2680		1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C10-C12	U	2680		1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C12-C16	U		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C21-C35	U		mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	

Client: IGSL				Job No.:		22-17076	22-17076	22-17076	22-17076	22-17076
Quotation No.: Q20-19951				nple ID.:	1424870	1424871	1424872	1424873	1424874	1424875
				mple ID.:	AA175561	AA175554	AA175567	AA175571	AA171709	AA17171
				_ocation:	BH01	BH03	BH04	BH05	BH06	BH06
				ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				epth (m):	2.0	2.0	3.0	2.0	1.0	2.0
			Asbes	stos Lab:				DURHAM	DURHAM	
Determinand	Accred.	SOP	Units	LOD						
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0				[A] < 5.0	[A] < 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0				[A] < 1.0	[A] < 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0				[A] < 5.0	[A] < 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0				[A] < 10	[A] < 10	
Benzene	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
Toluene	U	2760		1.0				[A] < 1.0	[A] < 1.0	
Ethylbenzene	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
m & p-Xylene	U	2760	μg/kg	1.0				[A] < 1.0	[A] < 1.0	
o-Xylene	U	2760		1.0				[A] < 1.0	[A] < 1.0	
Methyl Tert-Butyl Ether	U	2760		1.0				[A] < 1.0	[A] < 1.0	
Naphthalene	N		mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Acenaphthylene	N	2800	mg/kg					[A] < 0.010	[A] < 0.010	
Acenaphthene	N	2800	mg/kg	0.010				[A] < 0.010	[A] < 0.010	
Fluorene	N	2800	mg/kg					[A] < 0.010	[A] < 0.010	
Phenanthrene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Anthracene	N	2800						[A] < 0.010	[A] < 0.010	
Fluoranthene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Pyrene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Benzo[a]anthracene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Chrysene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Benzo[b]fluoranthene	N	2800	mg/kg					[A] < 0.010	[A] < 0.010	
Benzo[k]fluoranthene	N	_	mg/kg					[A] < 0.010	[A] < 0.010	
Benzo[a]pyrene	N	2800						[A] < 0.010	[A] < 0.010	
Indeno(1,2,3-c,d)Pyrene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Dibenz(a,h)Anthracene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Benzo[g,h,i]perylene	N	2800						[A] < 0.010	[A] < 0.010	
Coronene	N		mg/kg					[A] < 0.010	[A] < 0.010	
Total Of 17 PAH's	N		mg/kg					[A] < 0.010	[A] < 0.010	
PCB 28	N			0.0010				[A] < 0.20	[A] < 0.20	
PCB 52	N			0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 90+101	N N		,	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 90+101 PCB 118	N N			0.0010				[A] < 0.0010	[A] < 0.0010	

Client: IGSL	Chemtest Job No.:			22-17076	22-17076	22-17076	22-17076	22-17076	22-17076	
Quotation No.: Q20-19951	Chemtest Sample ID.:		1424870	1424871	1424872	1424873	1424874	1424875		
	Client Sample ID.:		AA175561	AA175554	AA175567	AA175571	AA171709	AA171710		
	Sample Location:			BH01	BH03	BH04	BH05	BH06	BH06	
	Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
	Top Depth (m):		2.0	2.0	3.0	2.0	1.0	2.0		
		Asbestos Lab:					DURHAM	DURHAM		
Determinand	Accred.	SOP	Units	LOD						
PCB 153	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 138	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
PCB 180	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
Total PCBs (7 congeners)	N	2815	mg/kg	0.0010				[A] < 0.0010	[A] < 0.0010	
Total Phenols	U	2920	mg/kg	0.10				< 0.10	< 0.10	

Project: 24013 Fortfield Road Terenure (Punch)

Project: 24013 Fortfield Road Te	renure (Punch <u>)</u>						
Chemtest Job No:	22-17076				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1424873					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA175571					reactive	
Sample Location:	BH05					hazardous	Hazardous
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.33	3	5	6
Loss On Ignition	2610	U	%	5.6			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.8		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0070		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	S 10 I/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0012	0.013	0.5	10	70
Copper	1455	U	0.0010	0.0095	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0079	0.079	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	J	0.004	0.036	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.24	2.4	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	9.9	99	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	11						

Waste Acceptance Criteria

Project: 24013 Fortfield Road Terenure (Punch)

Project: 24013 Fortfield Road Tel	renure (Punch)						
Chemtest Job No:	22-17076				Landfill \	Naste Acceptanc	e Criteria
Chemtest Sample ID:	1424874					Limits	
Sample Ref:						Stable, Non-	
Sample ID:	AA171709					reactive	
Sample Location:	BH06					hazardous	Hazardous
Top Depth(m):	1.0				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.42	3	5	6
Loss On Ignition	2610	U	%	2.9			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.015		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance I	eaching test
			mg/l	mg/kg	using B	S EN 12457 at L/S	6 10 l/kg
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0007	0.0069	0.5	10	70
Copper	1455	U	0.0011	0.011	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0077	0.077	0.5	10	30
Nickel	1455	J	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	J	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.41	4.1	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	59	580	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.5	65	500	800	1000

Solid Information							
Dry mass of test portion/kg	0.090						
Moisture (%)	16						

Waste Acceptance Criteria

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Sampled Devi		Deviation Code(s):	Containers Received:
1424870	AA179		BH01		А	Amber Glass 250ml
1424870		AA175561			А	Plastic Tub 500g
1424871		AA175554	BH03		А	Amber Glass 250ml
1424871		AA175554	BH03		А	Plastic Tub 500g
1424872	AA175567 BH04			А	Amber Glass 250ml	
1424872		AA175567	BH04		А	Plastic Tub 500g
1424873		AA175571	BH05		А	Amber Glass 250ml
1424873		AA175571	BH05		А	Plastic Tub 500g
1424874		AA171709	BH06		А	Amber Glass 250ml
1424874		AA171709	BH06		А	Plastic Tub 500g
1424875		AA171710	BH06		А	Amber Glass 250ml
1424875		AA171710	BH06		А	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary	
1010	pH Value of Waters	рН	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium Automated colorimetric analysis us 'Aquakem 600' Discrete Analyser.		
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded. Determination by High Performance Li Chromatography (HPLC) using electro detection.		
2010	pH Value of Soils	рН	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	

Test Methods

SOP	Title	Parameters included	Method summary	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	B-Dichloromethane extraction / GC-FID	
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8,>C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

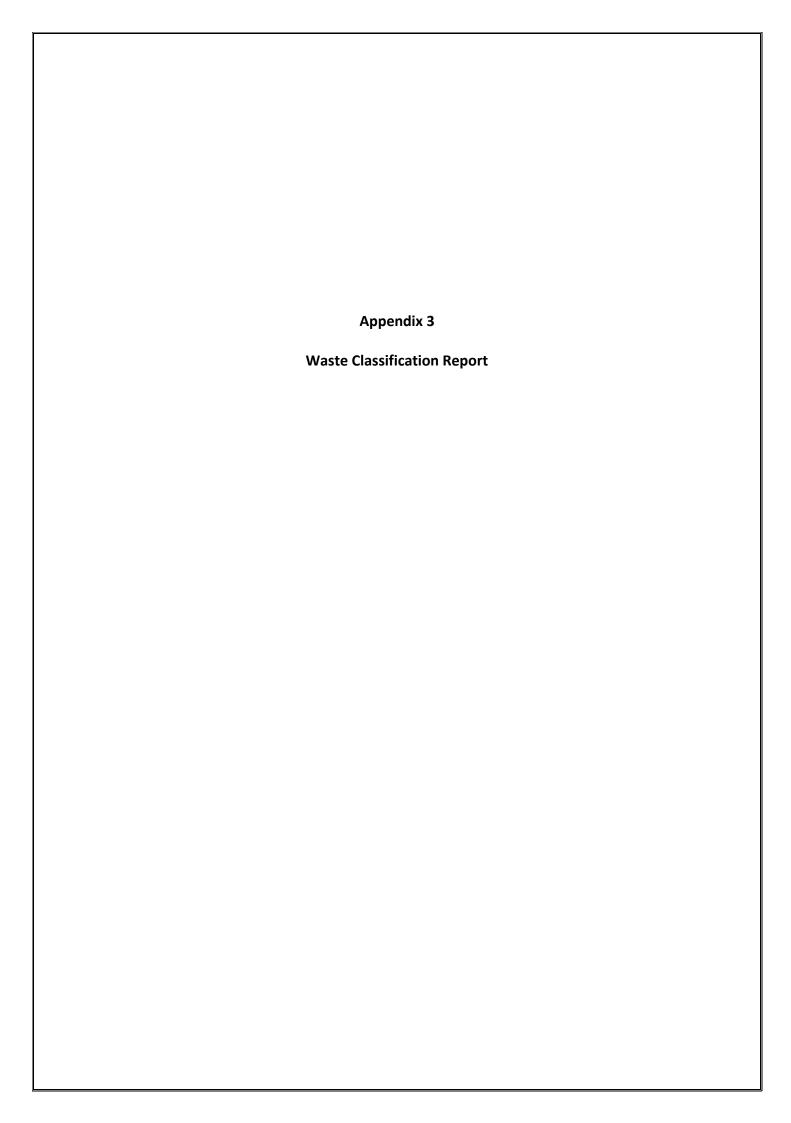
For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)


Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

9PO0T-9R4XH-6DEF

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

22-001-20 Fortfield Terenure

Description/Comments

Project Site

22-001-20 Fortfield Terenure

Classified by

Name: Company:

Austin Hynes O'Callaghan Moran & Associates
Date: Unit 15 Melbourne Business Park,

Date: Unit 15 Melbourne Business Pa 19 May 2022 13:55 GMT Model Farm Road

Telephone: Cork

+353 (0)21 4345366

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

Course
Hazardous Waste Classification

Date -

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	BH01	1.0	Non Hazardous		2
2	BH03	1.0	Non Hazardous		5
3	BH04	2.0	Non Hazardous		8
4	BH05	2.0	Non Hazardous		11
5	BH06	1.0	Non Hazardous		14
6	TP01	0.70	Non Hazardous		17
7	TP02	1.0	Non Hazardous		20
8	TP03	0.80	Non Hazardous		23
9	TP04	0.50	Non Hazardous		26

Related documents

# Name	Description
1 OCM Waste Stream Updated 2021	waste stream template used to create this Job

Report

Created by: Austin Hynes Created date: 19 May 2022 13:55 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	29
Appendix B: Rationale for selection of metal species	30
Appendix C: Version	31

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: BH01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

from contaminated sites)

Sample details

Sample name: LoW Code:

BH01 Chapter: Sample Depth:

1.0 m Entry:

Moisture content:

(dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 12% Dry Weight Moisture Correction applied (MC)

#			Determinand EU CLP index		Note	User entered	I data	Conv.	Compound of	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			actor			value	MC,	Oseu
1	æ 🎖	antimony { antimony	trioxide }			<2	mg/kg	1 197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
Ŀ		051-005-00-X 2	215-175-0	1309-64-4	Ш		9/9		12.00	9,9	10.000200 /0		
2	æ 🎖	arsenic { arsenic tric				9.8	mg/kg	1.32	11.553	mg/kg	0.00116 %	/	
		033-003-00-0	215-481-4	1327-53-3	Ш					3 3		Ľ	
3	æ 🎖	boron { diboron triox	•			0.44	mg/kg	3.22	1.265	mg/kg	0.000126 %	1	
				1303-86-2						3 3		ľ	
4	æ 🎖	cadmium { cadmium				1.6	mg/kg	1.142	1.632	mg/kg	0.000163 %	1	
		048-002-00-0	215-146-2	1306-19-0								_	
5	4	chromium in chromioxide (worst case) }	um(III) compounds	{ • chromium(III)		14	mg/kg	1.462	18.269	mg/kg	0.00183 %	✓	
		2	215-160-9	1308-38-9									
6	4	chromium in chromicompounds, with the of compounds speci	e exception of bariu	m chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
		024-017-00-8											
7	æ\$	copper { dicopper ox		<mark>le</mark> }		25	ma/ka	1.126	25.131	mg/kg	0.00251 %	/	
Ŀ		029-002-00-X 2	215-270-7	1317-39-1			9,9	0		9/9	0.00201.70	*	
8	æ 🎖	lead { lead chromate	9 }		1	15	mg/kg	1.56	20.89	mg/kg	0.00134 %	/	
				7758-97-6	Ĺ					55		•	
9	æ 🎖	mercury (mercury o	•			0.06	mg/kg	1.353	0.0725	mg/kg	0.00000725 %	1	
				7487-94-7								_	
10	æ 🎖		. ,			2.5	mg/kg	1.5	3.349	mg/kg	0.000335 %	/	
				1313-27-5						- 0		·	
11	ď,					37	mg/kg	2.976	98.323	mg/kg	0.00983 %	/	
				14721-18-7	Щ								
12	æ 🎖		•			1.3	mg/kg	2.554	2.964	mg/kg	0.000296 %	/	
				15060-62-5									
13	æ \$		• •			64	mg/kg	2.774	158.523	mg/kg	0.0159 %	1	
				13530-65-9									
14	0	TPH (C6 to C40) pe	<u> </u>			<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
				TPH	Щ							Щ	
15		tert-butyl methyl eth 2-methoxy-2-methyl	propane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									

Page 2 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

er	IVII	ronmental manag	gement for busine	255									
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			200-755-7	71-43-2	+								
17		toluene 601-021-00-3	203-625-9	108-88-3	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			202-049-4	100-41-4	+								
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		0.0053	mg/kg		0.0047	mg/kg	0.000000473 %	✓	
20	*	exception of comp	of hydrogen cyanid lex cyanides such a nercuric oxycyanide re in this Annex }	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
00	0	acenaphthylene	202-049-5	91-20-3	+	0.04			0.04		<u> </u>		1.00
22			205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene	201-469-6	83-32-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene	201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-093-3	00-73-7	+						<u> </u>		
25	0	phenanthrene	201-581-5	85-01-8	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26	0	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27	0	fluoranthene	2040711	120 12 1	T	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-912-4	206-44-0						J J			
28	0	pyrene	204-927-3	129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracer	ie	\		<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3						J J			
30		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
\vdash			1	E 10-01-3	+							Н	
31		benzo[b]fluoranthe	205-911-9	205-99-2	+	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe	ne	*		0.04			0.04		0.000004.07	П	1.00
32		601-036-00-5	205-916-6	207-08-9	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
34	0	indeno[123-cd]pyro	ene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac	205-893-2 ene	193-39-5	+								
35		601-041-00-2	200-181-8	53-70-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36	0	benzo[ghi]perylene	205-883-8	191-24-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
37		phenol	F-20 000 0	1:2. = . =		<0.1	mg/kg		<0.1	ma/ka	<0.00001 %	П	<lod< td=""></lod<>
51		604-001-00-2	203-632-7	108-95-2	1	20.1	mg/kg		70.1	mg/kg			
38	0	polychlorobipheny 602-039-00-4	215-648-1	1336-36-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
										Total:	0.0349 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

xylene: (conc.: 4.73e-07%)

Page 4 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

Classification of sample: BH03

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

BH03 Chapter: Sample Depth:

1.0 m Entry: Moisture content:

15%

(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

Determinands

Moisture content: 15% Dry Weight Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
1	4	antimony { antimor	·			<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
	_		215-175-0	1309-64-4	┝								
2	4	arsenic { arsenic tr	,	1.00= =0.0		7.3	mg/kg	1.32	8.381	mg/kg	0.000838 %	✓	
_	_			1327-53-3	⊢							\vdash	
3	4	boron { diboron tric 005-008-00-8		4202 06 2		1.9	mg/kg	3.22	5.32	mg/kg	0.000532 %	✓	
		cadmium { cadmiu	215-125-8	1303-86-2	┢							H	
4	4	048-002-00-0	215-146-2	1306-19-0	-	0.55	mg/kg	1.142	0.546	mg/kg	0.0000546 %	✓	
	_												
5	4	chromium in chromoxide (worst case)	•			12	mg/kg	1.462	15.251	mg/kg	0.00153 %	✓	
	_		215-160-9	1308-38-9								ш	
6	4	compounds, with the	nium(VI) compounds ne exception of bario cified elsewhere in t	um chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
		024-017-00-8											
7	4	copper { dicopper o	oxide; copper (I) oxid	de }		10	ma/ka	1.126	9.79	mg/kg	0.000979 %	√	
		029-002-00-X	215-270-7	1317-39-1								ľ	
8	4	lead { lead chroma	•		1	15	mg/kg	1.56	20.345	mg/kg	0.0013 %	1	
		082-004-00-2	231-846-0	7758-97-6									
9	4	mercury { mercury				0.06	mg/kg	1.353	0.0706	mg/kg	0.00000706 %	✓	
	_	080-010-00-X	231-299-8	7487-94-7	-								
10	4	, ,	ybdenum(VI) oxide			0.8	mg/kg	1.5	1.044	mg/kg	0.000104 %	✓	
	_		215-204-7	1313-27-5	-								
11	æ 🎉	nickel { nickel chro	,	44704 40 7		15	mg/kg	2.976	38.821	mg/kg	0.00388 %	✓	
	_		238-766-5	14721-18-7								\vdash	
12	4	selenium { <mark>nickel s</mark> 028-031-00-5	239-125-2	15060-62-5	-	0.97	mg/kg	2.554	2.154	mg/kg	0.000215 %	✓	
13	æ G	zinc { zinc chromat 024-007-00-3	e } 236-878-9	13530-65-9	_	51	mg/kg	2.774	123.027	mg/kg	0.0123 %	√	
\vdash				13330-00-9	⊢							\vdash	
14	0	TPH (C6 to C40) p		TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	, ,	1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>

#			Determinand		Note	User entered	l data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC/	Used
16		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
17		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	_							-	
18	0	,	000 040 4	400 44 4	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4								-	
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	*	exception of comp ferricyanides and specified elsewhe	of hydrogen cyanio lex cyanides such a mercuric oxycyanid re in this Annex }	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5 naphthalene											
21		601-052-00-2	202-049-5	91-20-3	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene	005 047 4	000.00.0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	0	acenaphthene	205-917-1	208-96-8								-	
23		accriapitatione	201-469-6	83-32-9	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		fluorene		To the to		0.04			2.24				
24			201-695-5	86-73-7	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23			201-581-5	85-01-8		20.01	ilig/kg		VO.01	mg/kg	<0.000001 78		LOD
26	0	anthracene	204-371-1	120-12-7	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27	0	fluoranthene		1		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		1	205-912-4	206-44-0									
28	0	pyrene	204-927-3	129-00-0	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]anthracer	ne			0.04			0.04		0.000004.0/		
29		601-033-00-9	200-280-6	56-55-3	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		chrysene				<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9		10.01			40.01		40.000001 70		1202
31		benzo[b]fluoranthe				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	-								
32		benzo[k]fluoranthe		ho7 00 0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	\vdash	601-036-00-5	205-916-6	207-08-9	+								
33		benzo[a]pyrene; b	enzo[def]chrysene	50-32-8	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	indeno[123-cd]pyr		ρυ-32-0	+								
34		indeno[120-odjpyl	205-893-2	193-39-5	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
2-		dibenz[a,h]anthrac		1,22,20,0	+	0.01			0.67		0.000001.01		
35		601-041-00-2	200-181-8	53-70-3	\dashv	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36	0	benzo[ghi]perylen	e			<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
55			205-883-8	191-24-2	1	30.01			30.01				
37		phenol				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		604-001-00-2	203-632-7	108-95-2									
38	0	polychlorobipheny 602-039-00-4	ls; PCB 215-648-1	1336-36-3	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		.1	1	1						Total:	0.0232 %	7	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: BH04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

from contaminated sites)

Sample details

Sample name: LoW Code:

BH04 Chapter: Sample Depth:

2.0 m Entry:

Moisture content:

(dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 11% Dry Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	P Note	User entered d	lata	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
		number	7						ž	
1	æ	antimony { antimony trioxide }		<2 n	ng/kg	1.197	<2.394 mg/kg	<0.000239 %		<lod< th=""></lod<>
_		051-005-00-X 215-175-0 1309-64-4	_						L	
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		9.3 n	ng/kg	1.32	11.062 mg/kg	0.00111 %	✓	
-		boron { diboron trioxide }	\vdash							
3	4	005-008-00-8 215-125-8 1303-86-2	-	0.43 n	ng/kg	3.22	1.247 mg/kg	0.000125 %	✓	
	æ	cadmium { cadmium oxide }		4.0		4 4 40	1.047	0.000405.0/		
4	_	048-002-00-0 215-146-2 1306-19-0	1	1.6 n	ng/kg	1.142	1.647 mg/kg	0.000165 %	✓	
5	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		16 n	ng/kg	1.462	21.067 mg/kg	0.00211 %	√	
_		215-160-9 1308-38-9								
6	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.5 n	ng/kg	2.27	<1.135 mg/kg	<0.000113 %		<lod< th=""></lod<>
		024-017-00-8					,		L	
7	4	copper { dicopper oxide; copper (I) oxide }		25 n	ng/kg	1.126	25.358 mg/kg	0.00254 %	√	
		029-002-00-X 215-270-7 1317-39-1								
8	4	lead { lead chromate 082-004-00-2	1	17 n	ng/kg	1.56	23.889 mg/kg	0.00153 %	✓	
-		mercury { mercury dichloride }								
9	~	080-010-00-X 231-299-8 7487-94-7	1	0.05 n	ng/kg	1.353	0.061 mg/kg	0.0000061 %	✓	
10	æ	molybdenum { molybdenum(VI) oxide }		0.7	//	4.5	2.040	0.000005.0/	,	
10	_	042-001-00-9 215-204-7 1313-27-5		2.7 n	ng/kg	1.5	3.649 mg/kg	0.000365 %	✓	
11	4	nickel { nickel chromate }		43 n	na/ka	2.976	115.297 mg/kg	0.0115 %	1	
		028-035-00-7 238-766-5 14721-18-7							ľ	
12		selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		1.5 n	ng/kg	2.554	3.451 mg/kg	0.000345 %	✓	
-		zinc { zinc chromate }							-	
13		024-007-00-3 236-878-9 13530-65-9		79 n	ng/kg	2.774	197.439 mg/kg	0.0197 %	✓	
44		TPH (C6 to C40) petroleum group		40 -			40	0.004.0/		1.00
14		TPH	Ĺ	<10 n	ng/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001 n	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>
		603-181-00-X 216-653-1 1634-04-4								

Page 8 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

er	rvir	ronmental manag	ement for busine	55									
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene	200-755-7	/ 1-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
ļ.,		601-021-00-3	203-625-9	108-88-3		40.001							
18	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	exception of comp	of hydrogen cyanida lex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene	205-917-1	208-96-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	0	acenaphthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene	201-469-6	83-32-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene	201-581-5	85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26	0	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
27	0	fluoranthene	205-912-4	206-44-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
28	0	pyrene	204-927-3	129-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracen	1	56-55-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
30		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
31		benzo[b]fluoranthe		205-99-2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32		benzo[k]fluoranthe 601-036-00-5	1	207-08-9		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; be	enzo[def]chrysene			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
34	0	601-032-00-3 indeno[123-cd]pyre		50-32-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthrac		193-39-5		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36	0	601-041-00-2 benzo[ghi]perylene		53-70-3		<0.01	mg/kg		<0.01		<0.000001 %		<lod< td=""></lod<>
37		phenol	205-883-8	191-24-2		<0.1	mg/kg		<0.1		<0.00001 %		<lod< td=""></lod<>
38		604-001-00-2 polychlorobiphenyl		108-95-2		<0.001	mg/kg		<0.001		<0.0000001 %		<lod< td=""></lod<>
		602-039-00-4	215-648-1	1336-36-3	_	13.001				Total:	0.041 %		
										iolal.	J.UT1 /0	丄	

k	Κŧ	Ke

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 10 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

Classification of sample: BH05

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

BH05 Chapter: Sample Depth:

2.0 m Entry: Moisture content:

11%

(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 11% Dry Weight Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	d data	Conv.	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	
1	4	antimony { antimor	·			<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
	_		215-175-0	1309-64-4	┢							Н	
2	4	arsenic { arsenic tr	,	4007 50 0		1.4	mg/kg	1.32	1.665	mg/kg	0.000167 %	✓	
-	_			1327-53-3	┢							Н	
3	4	boron { diboron tric 005-008-00-8	215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
	æ	cadmium { cadmiu		1303-00-2	\vdash								
4	•	048-002-00-0	215-146-2	1306-19-0	-	0.21	mg/kg	1.142	0.216	mg/kg	0.0000216 %	✓	
5	4		nium(III) compounds	{ • chromium(III)		1.9	mg/kg	1.462	2.502	mg/kg	0.00025 %	√	
6	4	compounds, with the	nium(VI) compounds ne exception of baric cified elsewhere in t	um chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
		024-017-00-8											
7	4	copper { dicopper of 029-002-00-X	oxide; copper (I) oxide 215-270-7	<mark>de</mark> } 1317-39-1		3.2	mg/kg	1.126	3.246	mg/kg	0.000325 %	✓	
	_	lead { lead chroma		1317-39-1	-								
8	4	082-004-00-2	231-846-0	7758-97-6	1	2.9	mg/kg	1.56	4.075	mg/kg	0.000261 %	✓	
9	æ	mercury { mercury		1100 31 0		<0.05		4 252	<0.0677		<0.00000677 %	Н	<lod< td=""></lod<>
9	_	080-010-00-X	231-299-8	7487-94-7	1	<0.05	mg/kg	1.353	<0.0077	mg/kg	<0.00000077 %		\ \LOD
10	ď	molybdenum { mol	ybdenum(VI) oxide	}		<0.5	mg/kg	1.5	<0.75	mg/kg	<0.000075 %		<lod< td=""></lod<>
		042-001-00-9	215-204-7	1313-27-5		10.0		1.0	10.70	mg/ng			
11	4	nickel { nickel chro	,			4.2	mg/kg	2.976	11.262	mg/kg	0.00113 %	√	
			238-766-5	14721-18-7	<u> </u>								
12	æ G	selenium { nickel s 028-031-00-5	elenate } 239-125-2	15060-62-5	-	0.25	mg/kg	2.554	0.575	mg/kg	0.0000575 %	✓	
13	4	zinc { zinc chromat 024-007-00-3		13530-65-9		11	mg/kg	2.774	27.492	mg/kg	0.00275 %	✓	
\vdash	-	TPH (C6 to C40) p		13330-00-9	\vdash							Н	
14	0	π π (ου το ο40) μ		TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	, ,	1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>

er	ıvi	ronmental manag	ement for busine	955									
#		EU CLP index	Determinand	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound con	nc.	Classification value	> Applied	Conc. Not Used
		number	EC Number	CAS Number	딩							MC	
16		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.001	mg/kg		<0.001 m	ng/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene 601-021-00-3	203-625-9	,	T	<0.001	mg/kg		<0.001 m	ng/kg	<0.0000001 %		<lod< td=""></lod<>
40	0	ethylbenzene	203-625-9	108-88-3		0.004			0.004	/1	0.0000004.0/		1.00
18		601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001 m	ng/kg	<0.0000001 %		<lod< td=""></lod<>
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001 m	ng/kg	<0.0000001 %		<lod< td=""></lod<>
20	**	exception of compl ferricyanides and r specified elsewher	of hydrogen cyanidelex cyanides such as nercuric oxycyanide in this Annex }	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942 m	ng/kg	<0.0000942 %		<lod< td=""></lod<>
21		naphthalene				<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
		acenaphthylene	202-049-5	91-20-3	\vdash				<u> </u>				_
22		. ,	205-917-1	208-96-8		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
23	•	acenaphthene	201-469-6	83-32-9		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene	201-695-5	86-73-7		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene	201-581-5	85-01-8		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
26	0	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
27	0	fluoranthene		,		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
28	0	pyrene	205-912-4	206-44-0	T	<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
29		benzo[a]anthracen	204-927-3 e	129-00-0		<0.01	mg/kg		<0.01 m	na/ka	<0.000001 %		<lod< td=""></lod<>
23		601-033-00-9	200-280-6	56-55-3		Q0.01				ig/kg	<u> </u>		\
30		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
31		benzo[b]fluoranthe	ne		T	<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	-								
32		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9	$\frac{1}{2}$	<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
34	9	indeno[123-cd]pyre	ene	1		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthrac		193-39-5	H	<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
36	0	601-041-00-2 benzo[ghi]perylene		53-70-3		<0.01	mg/kg		<0.01 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
37		phenol	205-883-8	191-24-2		<0.1	mg/kg				<0.00001 %		<lod< td=""></lod<>
	0	604-001-00-2 polychlorobiphenyl	203-632-7 s; PCB	108-95-2	1				<u> </u>				
38	_	602-039-00-4	215-648-1	1336-36-3		<0.001	mg/kg			ng/kg			<lod< td=""></lod<>
										Total:	0.00664 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: BH06

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

from contaminated sites)

Sample details

Sample name: LoW Code: **BH06**

Chapter: Sample Depth:

1.0 m Entry: Moisture content:

16%

(dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 16% Dry Weight Moisture Correction applied (MC)

#		Determinand	Note	User entered data		onv.	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index	CLP		ı a	actor		value	MC.	Used
1	ď	antimony { antimony trioxide }		<2 ma/l	(g 1.	197	<2.394 mg/kg	<0.000239 %		<lod< th=""></lod<>
Ŀ		051-005-00-X 215-175-0 1309-64-4			.9			10.000200 70		1202
2	ď	arsenic { arsenic trioxide }		1.7 mg/l	<mark>(g</mark> 1.	.32	1.935 mg/kg	0.000193 %	1	
		033-003-00-0 215-481-4 1327-53-3		3	3				Ľ	
3	ď	boron { diboron trioxide }		<0.4 mg/l	(g 3.	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
		005-008-00-8 215-125-8 1303-86-2		<u> </u>	_					
4	ď	cadmium { cadmium oxide }		0.27 mg/l	<mark>(g</mark> 1.	.142	0.266 mg/kg	0.0000266 %	1	
	L	048-002-00-0 215-146-2 1306-19-0								
5	æ	chromium in chromium(III) compounds { • chromium(III) oxide (worst case) }		1.9 mg/l	kg 1.4	.462	2.394 mg/kg	0.000239 %	✓	
_	L	215-160-9 1308-38-9								
6	æ	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.5 mg/l	<mark>(g</mark> 2.	2.27	<1.135 mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8								
7	ď	copper { dicopper oxide; copper (I) oxide }		3.4 mg/l	<mark>(g</mark> 1.	.126	3.3 mg/kg	0.00033 %	1	
		029-002-00-X 215-270-7 1317-39-1		<u> </u>	_				Ľ	
8	ď	lead { lead chromate }	1	2.3 mg/l	<mark>(g</mark> 1.	.56	3.093 mg/kg	0.000198 %	1	
		082-004-00-2 231-846-0 7758-97-6								
9	ď	mercury { mercury dichloride }		<0.05 mg/l	<mark>(g</mark> 1.:	.353	<0.0677 mg/kg	<0.00000677 %		<lod< td=""></lod<>
	_	080-010-00-X 231-299-8 7487-94-7							1	
10	ď	molybdenum { molybdenum(VI) oxide }		<0.5 mg/l	kg 1	1.5	<0.75 mg/kg	<0.000075 %		<lod< td=""></lod<>
	_	042-001-00-9 215-204-7 1313-27-5								
11	e 🐫	nickel { nickel chromate 028-035-00-7 1238-766-5 14721-18-7		5.5 mg/l	<mark>(g</mark> 2.9	.976	14.112 mg/kg	0.00141 %	✓	
	_		\vdash						\vdash	
12	e C		-	<0.25 mg/l	<mark>(g</mark> 2.	.554	<0.638 mg/kg	<0.0000638 %		<lod< td=""></lod<>
	_		\vdash				<u> </u>		┝	
13	e 🤻	024-007-00-3	-	9.1 mg/l	<mark>(g</mark> 2.	.774	21.763 mg/kg	0.00218 %	✓	
-	-	TPH (C6 to C40) petroleum group	\vdash							
14	0	TPH	-	<10 mg/l	(g		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001 mg/l	кg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4								

Page 14 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

environmental	management:	tor husiness

eı	IVII	ronmental manag	gement for busin	ess	_			1			_	1
#			Determinand		CLP Note	User entered	d data	Conv.	Compound conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF						MC	
16		benzene				<0.001	mg/kg		<0.001 mg/	kg <0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2						9		
17		toluene				<0.001	mg/kg		<0.001 mg/	kg <0.0000001 %		<lod< td=""></lod<>
··		601-021-00-3	203-625-9	108-88-3		10.001				.9 10.000000 70		,
18	0	ethylbenzene				<0.001	mg/kg		<0.001 mg/	(a) <0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4		40.001	mg/ng		40.001 mg/	19 10.0000001 70		1202
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001 mg/	kg <0.0000001 %		<lod< td=""></lod<>
20	æ \$	exception of comp	of hydrogen cyanic lex cyanides such a mercuric oxycyanid re in this Annex }	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942 mg/	<g %<="" <0.0000942="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
21		naphthalene				<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	+							
22	0	acenaphthylene	205-917-1	208-96-8		<0.01	mg/kg		<0.01 mg/	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
23	0	acenaphthene	201-469-6	83-32-9	4	<0.01	mg/kg		<0.01 mg/	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
24	0	fluorene				<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
		1	201-695-5	86-73-7								
25	Θ	phenanthrene	201-581-5	85-01-8	_	<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
26	0	anthracene				<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
27	0	fluoranthene	204-371-1	120-12-7		<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
			205-912-4	206-44-0						9		
28	0	pyrene	204-927-3	129-00-0		<0.01	mg/kg		<0.01 mg/	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
29		benzo[a]anthracer	ne			<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
ر ع		601-033-00-9	200-280-6	56-55-3		\U.U1	mg/kg			.9 \0.000001 /6		
30		chrysene				<0.01	ma/ka		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9		<0.01	mg/kg		\0.01 ing/	vg <0.000001 %		LOD
31		benzo[b]fluoranthe	ene 205-911-9	205-99-2		<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
32		benzo[k]fluoranthe		1		<0.01	ma/k-		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
32		601-036-00-5	205-916-6	207-08-9		<0.01	mg/kg		20.01 mg/	\g <0.000001%		LUD
33		benzo[a]pyrene; b 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
34	9	indeno[123-cd]pyr	ene			<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthrac	205-893-2 cene	193-39-5	+	<0.01	mg/kg		<0.01 mg/	kg <0.000001 %		<lod< td=""></lod<>
تا		601-041-00-2	200-181-8	53-70-3		10.01	9/119		.5.5.	3 .5.500031 /0		
36	0	benzo[ghi]perylen	e 205-883-8	191-24-2	-	<0.01	mg/kg		<0.01 mg/	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
37		phenol 604-001-00-2	203-632-7	108-95-2		<0.1	mg/kg		<0.1 mg/	<g %<="" <0.00001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
38	0	polychlorobipheny	ls; PCB			<0.001	mg/kg		<0.001 mg/	kg <0.0000001 %		<lod< td=""></lod<>
_		602-039-00-4	215-648-1	1336-36-3					Tot	al: 0.00633.9/		
									Tot	al: 0.00632 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: TP01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

TP01 Chapter:

Sample Depth: 0.70 m Entry:

Moisture content:

19%

(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 19% Dry Weight Moisture Correction applied (MC)

#			Determinand		CLP Note	User entered	d data	Conv. Factor	Compound co	onc.	Classification value	Αp	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC,	
1	æ\$	antimony { antimor				<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4	-							H	
2	4	arsenic { arsenic tr 033-003-00-0		4007 50 0		22	mg/kg	1.32	24.409	mg/kg	0.00244 %	✓	
_	-	boron { diboron tric	215-481-4	1327-53-3	┢							\vdash	
3	æ\$	005-008-00-8	215-125-8	1303-86-2		23	mg/kg	3.22	62.233	mg/kg	0.00622 %	✓	
	æ	cadmium { cadmiu		1303-60-2								\vdash	
4	W-	048-002-00-0	215-146-2	1306-19-0	-	2.4	mg/kg	1.142	2.304	mg/kg	0.00023 %	✓	
5	4	chromium in chron oxide (worst case)	nium(III) compounds	; { • chromium(III)		25	mg/kg	1.462	30.705	mg/kg	0.00307 %	✓	
			215-160-9	1308-38-9	<u> </u>							ш	
6	4	compounds, with to of compounds spe	nium(VI) compounds he exception of barion cified elsewhere in t	um chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< th=""></lod<>
		024-017-00-8											
7	æ\$	copper { dicopper of the copper of the coppe	oxide; copper (I) oxide 215-270-7	<mark>de</mark> } 1317-39-1		26	mg/kg	1.126	24.599	mg/kg	0.00246 %	✓	
		lead { lead chroma		1317-39-1									
8	4	082-004-00-2	231-846-0	7758-97-6	1	26	mg/kg	1.56	34.08	mg/kg	0.00218 %	✓	
	æ	mercury { mercury		1100 01 0								\vdash	
9	_	080-010-00-X	231-299-8	7487-94-7	1	0.09	mg/kg	1.353	0.102	mg/kg	0.0000102 %	✓	
10	æ	molybdenum { mol	ybdenum(VI) oxide	}		3.7		1.5	4.664		0.000466 %	,	
10	_	042-001-00-9	215-204-7	1313-27-5		3.7	mg/kg	1.5	4.664	mg/kg	0.000466 %	✓	
11	ď	nickel { nickel chro	mate }			56	ma/ka	2.976	140.06	mg/kg	0.014 %	/	
Ľ		028-035-00-7	238-766-5	14721-18-7		50		2.570		mg/kg	0.014 /0		
12	æ 🎉	selenium { nickel s				2.4	mg/kg	2.554	5.151	mg/kg	0.000515 %	√	
_		028-031-00-5	239-125-2	15060-62-5	<u> </u>							Ĺ	
13	æ\$	zinc { zinc chroma	*	1,0500.05.0		95	mg/kg	2.774	221.465	mg/kg	0.0221 %	✓	
-		024-007-00-3	236-878-9	13530-65-9	_							\vdash	
14	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
		tert-butyl methyl et	hor: MTRE:	IFN	\vdash								\vdash
15		2-methoxy-2-meth	ylpropane			<0.001 m	mg/kg	<g< th=""><th><0.001</th><th>mg/kg</th><th><0.0000001 %</th><th></th><th><lod< th=""></lod<></th></g<>	<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									

Report of calcular 17.100 of 170 may 201

en	vir	ronmental manag	gement for busin	ness									
#		FILOID in day	Determinand	CAC Niverbar	CLP Note	User entere	d data	Conv. Factor	Compound cor	nc.	Classification value	Applied:	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	딩							MC	
16		benzene	000 750 7	74.40.0	_	<0.001	mg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8 toluene	200-753-7	71-43-2	+								
17		601-021-00-3	203-625-9	108-88-3	-	<0.001	mg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
18	0	ethylbenzene				<0.001	mg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	+								
		xylene 601-022-00-9	202-422-2 [1]	95-47-6 [1]	4								
19		001-022-00-9	203-396-5 [2]	106-42-3 [2]		<0.001	mg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
			203-576-3 [3]	108-38-3 [3]									
	_		215-535-7 [4]	1330-20-7 [4]									
	e Ç	cyanides { salts	of hydrogen cyan	de with the									
20		ferricyanides and r				<0.5	mg/kg	1.884	<0.942 n	ng/kg	<0.0000942 %		<lod< td=""></lod<>
		specified elsewher	re in this Annex }										1
		006-007-00-5			1								
21		naphthalene			_	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	+								
22	0	acenaphthylene	205-917-1	208-96-8	_	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
	0	acenaphthene	203-917-1	200-90-0	+								
23	9	асспартитото	201-469-6	83-32-9	\dashv	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene		1		0.04			0.04	(1	0.000004.0/		1.00
24			201-695-5	86-73-7	-	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
25	0	phenanthrene				<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
20			201-581-5	85-01-8		40.01			Z0.01	ng/kg	<0.000001 70		LOD
26	Θ	anthracene				<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
			204-371-1	120-12-7	4					0 0			-
27	0	fluoranthene	1		_	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
		n	205-912-4	206-44-0	-								
28	0	pyrene	204-927-3	129-00-0	-	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]anthracer		1.20 00 0									
29		601-033-00-9	200-280-6	56-55-3	\dashv	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
30		chrysene				<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
50		601-048-00-0	205-923-4	218-01-9	1	Q0.01	mg/kg		Q.01	ng/kg	10.000001 /6		\
31		benzo[b]fluoranthe				<0.01	mg/kg		<0.01 n	ng/ka	<0.000001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	-					5 5			<u> </u>
32		benzo[k]fluoranthe 601-036-00-5		207.00.0	_	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
		benzo[a]pyrene; b	205-916-6	207-08-9	+								
33		601-032-00-3	200-028-5	50-32-8	\dashv	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
2.4	0	indeno[123-cd]pyr		1	\top	0.04	//		0.04	(1	0.000004.0/		100
34			205-893-2	193-39-5	\exists	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthrac			Г	<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
-55		601-041-00-2	200-181-8	53-70-3	1	30.01	9/119		10.01	9,119	3.00000170		
36	0	benzo[ghi]perylene		404.04.0		<0.01	mg/kg		<0.01 n	ng/kg	<0.000001 %		<lod< td=""></lod<>
		nhanal	205-883-8	191-24-2	+								
37		phenol 604-001-00-2	203-632-7	108-95-2	_	<0.1	mg/kg		<0.1 n	ng/kg	<0.00001 %		<lod< td=""></lod<>
	0			100-33-2	+								
38		602-039-00-4	215-648-1	1336-36-3		<0.001	mg/kg		<0.001 n	ng/kg	<0.0000001 %		<lod< td=""></lod<>
Г,		1		,	•					Total:	0.0552 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: TP02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

from contaminated sites)

Sample details

LoW Code: Sample name:

TP02 Chapter: Sample Depth: Entry:

1.0 m Moisture content:

12% (dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 12% Dry Weight Moisture Correction applied (MC)

#		Determinand	Note	User entered of	data	Conv.	Compound c	onc.	Classification value	Applied	Conc. Not Used
		EU CLP index EC Number CAS Number number	CLP			1 actor			value	MC.	Oseu
1	æ.	antimony { antimony trioxide }		<2 r	ma/ka	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
		051-005-00-X 215-175-0 1309-64-4			3 3			3 3		Ш	
2	4	arsenic { arsenic trioxide }		9.4 r	mg/kg	1.32	11.081	mg/kg	0.00111 %	1	
		033-003-00-0 215-481-4 1327-53-3									
3	4	boron { diboron trioxide }		0.65 r	mg/kg	3.22	1.869	mg/kg	0.000187 %	✓	
_		005-008-00-8 215-125-8 1303-86-2	_								
4	4	cadmium { cadmium oxide }		1.5 r	mg/kg	1.142	1.53	mg/kg	0.000153 %	✓	
		048-002-00-0 215-146-2 1306-19-0									
5	≪*	chromium in chromium(III) compounds {		13 r	mg/kg	1.462	16.964	mg/kg	0.0017 %	✓	
		215-160-9 1308-38-9									
6	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
		024-017-00-8									
7	æ.	copper { dicopper oxide; copper (I) oxide }		25 r	ma/ka	1.126	25.131	mg/kg	0.00251 %	/	
		029-002-00-X 215-270-7 1317-39-1			0 0			- 0		Ľ	
8	4	lead { lead chromate }	1	14 r	mg/kg	1.56	19.498	mg/kg	0.00125 %	1	
		082-004-00-2 231-846-0 7758-97-6								Ш	
9	4	mercury { mercury dichloride }		0.05 r	mg/kg	1.353	0.0604	mg/kg	0.00000604 %	✓	
		080-010-00-X 231-299-8 7487-94-7									
10	-	molybdenum { molybdenum(VI) oxide }		2.7 r	mg/kg	1.5	3.617	mg/kg	0.000362 %	✓	
		042-001-00-9 215-204-7 1313-27-5	-							Н	
11	4	nickel { nickel chromate 028-035-00-7 238-766-5 14721-18-7		37 r	mg/kg	2.976	98.323	mg/kg	0.00983 %	✓	
	\vdash		\vdash							Н	
12	4	selenium {	-	1.5 r	mg/kg	2.554	3.42	mg/kg	0.000342 %	✓	
\vdash		zinc { zinc chromate }	\vdash							Н	
13	4	024-007-00-3 236-878-9 13530-65-9	-	72 r	mg/kg	2.774	178.338	mg/kg	0.0178 %	✓	
		TPH (C6 to C40) petroleum group	H								
14	9	TPH	-	<10 r	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4			mg/kg	·9	/kg <0.001				

Page 20 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

Barriage Part	er	ıvir	ronmental manag	gement for busin	ess									
10	#				CAS Number	CLP Note	User entered	l data		Compound co	nc.		MC Applied	l I
Total Journal Total Journa	16			000 752 7	74 40 0		<0.001	mg/kg		<0.001 r	mg/kg	<0.0000001 %		<lod< td=""></lod<>
10	-			200-753-7	/ 1-43-2	+								
10	17			203-625-9	108-88-3	-	<0.001	mg/kg		<0.001 r	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19	18	0		10000010	1100 111		<0.001	mg/kg		<0.001 r	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19				202-849-4	100-41-4	-								
20	19		-	203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.001	mg/kg		<0.001 r	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Color	20	4	exception of comp ferricyanides and i specified elsewher	lex cyanides such a mercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942 r	mg/kg	<0.0000942 %		<lod< td=""></lod<>
Section Sect	21		naphthalene				<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
205-917-1 208-96-8	22	0		202-049-5	91-20-3		-0.01					<u> </u>		4 OD
201-469-6 83-32-9				205-917-1	208-96-8		<0.01	mg/kg		<0.01 I	ng/kg	<0.000001%		<lud< td=""></lud<>
24	23	0	acenaphthene	201-469-6	83-32-9	-	<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
Denanthrene Country	24	0	fluorene	201-605-5	86-73-7		<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
				201 030 0	00 10 1	+								
204-371-1 120-12-7 20.01 mg/kg 20.01 mg/kg 20.000001% 2LOD	25	0	prienantinene	201-581-5	85-01-8		<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
Process of State Process of	26	Θ	anthracene	204-371-1	120-12-7	_	<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
28	27	0	fluoranthene				<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
204-927-3 129-00-0 20.01 mg/kg 20.00001 20.00001 20.00001 20.00001 20.00001 20.0000001 20.0000001 20.0000001 20.00000001 20.0000000000000000000000000000000000				205-912-4	206-44-0									
29	28	9	pyrene	204-927-3	129-00-0	-	<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
S01-033-00-9 P00-280-6 S6-55-3	29						<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
SO	_		601-033-00-9	200-280-6	56-55-3			J 9			0 3			
Denzo[b]fluoranthene Continuous Contin	30			205-923-4	218-01-9	_	<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
31				1		+								
benzo[k]fluoranthene co.01 mg/kg co.001 mg/kg co.000001 % clob	31				205-99-2	-	<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
32						\top								
33	32		601-036-00-5	205-916-6	207-08-9		<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
34	33				50-32-8	_	<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
205-893-2 193-39-5	34	9		ene			<0.01	mg/kg		<0.01 r	mg/ka	<0.000001 %		<lod< td=""></lod<>
35			dibenzia hlanthrad	1	193-39-5	+								
205-883-8 191-24-2	35		601-041-00-2	200-181-8	53-70-3		<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
phenol	36	0	benzo[ghi]perylend		191-24-2	4	<0.01	mg/kg		<0.01 r	mg/kg	<0.000001 %		<lod< td=""></lod<>
604-001-00-2 203-632-7 108-95-2	37		phenol		1.0.212		<0.1	ma/ka		<0.1 r	ma/ka	<0.00001 %		<lod< td=""></lod<>
36 602-039-00-4 215-648-1 1336-36-3 <					108-95-2	1		9/119		,,,,,	9,119			
Total: 0.0368 %	38	0			1336-36-3	-	<0.001	mg/kg		<0.001 r	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		_									Total:	0.0368 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 22 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

Classification of sample: TP03

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:

TP03 Chapter: Sample Depth:

0.80 m Entry:

Moisture content:

(dry weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 13% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	ď		•			<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
	-	051-005-00-X	215-175-0	1309-64-4	┢								
2	æ 🎖		ioxide } 215-481-4	1327-53-3		9.5	mg/kg	1.32	11.1	mg/kg	0.00111 %	✓	
-	_			1327-53-3	-								
3	æ 🎖			4000 00 0		3.8	mg/kg	3.22	10.828	mg/kg	0.00108 %	✓	
-	-		215-125-8	1303-86-2	\vdash								
4	4		•			1.4	mg/kg	1.142	1.415	mg/kg	0.000142 %	✓	
		048-002-00-0	215-146-2	1306-19-0									
5	e\$	chromium in chromoxide (worst case)				13	mg/kg	1.462	16.814	mg/kg	0.00168 %	✓	
	-		215-160-9	1308-38-9	-								
6	æ	compounds, with the compounds spe	nium(VI) compounds ne exception of bari cified elsewhere in t	um chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
	-	024-017-00-8			┢								
7	· 🕰	copper { dicopper oxide; copper (I) oxide }				21	mg/kg	1.126	20.924	mg/kg	0.00209 %	✓	
_	-		215-270-7	1317-39-1	-						,	-	
8	ď,	ead { <mark>lead chromate</mark> }			_ 1	15	mg/kg	1.56	6 20.706	mg/kg	0.00133 %	1	
		082-004-00-2	231-846-0	7758-97-6			IIIg/kg				9 0.00100 70		
9	ď,					0.05	mg/kg	1.353	0.0599	mg/kg	0.00000599 %	1	
			231-299-8	7487-94-7								ľ	
10	ď		ybdenum(VI) oxide	}		2.2	mg/kg	1.5	2.921	mg/kg	0.000292 %	√	
		042-001-00-9	215-204-7	1313-27-5								Ť	
11	ď	nickel { nickel chro	mate }			31	ma/ka	2.976	81.65	mg/kg	0.00816 %	1	
Ľ		028-035-00-7	238-766-5	14721-18-7				2.070	01.00	g/itg		*	
12	ď	selenium { nickel s	elenate }			1.2	ma/ka	2.554	2.712	mg/kg	0.000271 %	1	
Ľ		028-031-00-5	239-125-2	15060-62-5				2.00				*	
13	ď	zinc { zinc chromat	te}		П	69	ma/ka	2.774	169.395	mg/kg	0.0169 %	√	
13	ľ	024-007-00-3	236-878-9	13530-65-9		03	mg/kg	2.114	109.595	mg/kg	0.0103 /0	_	
14	4 0	TPH (C6 to C40) p	TPH (C6 to C40) petroleum group			-10	malka		-10	ma/ka	-0.001.9/		<lod< td=""></lod<>
14				TPH		<10 r	mg/kg		<10	mg/kg	<0.001 %		<lod td="" <=""></lod>
15		tert-butyl methyl et 2-methoxy-2-methy	, ,			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4				10.001		3			

EU CLP index	#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound c	onc.	Classification value	Applied	Conc. Not Used
10				EC Number	CAS Number	겁							M	
17	16			000 750 7	74.40.0		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18				200-753-7	/1-43-2	\vdash								
18	17			202 625 0	100 00 3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
15		_		203-023-9	100-00-3	H								
19 \$01-022-00-9 \$02-422-2 [1] \$6-47-6 [1] \$203-576-3 [3] \$100-308-5 [2] \$100-42-3 [2] \$203-576-3 [3] \$100-308-3 [3] \$100-308-3 [3] \$100-308-3 [3] \$100-308-3 [3] \$100-308-7 [4] \$130-20-7 [4] \$100-20-20-20-20-20-20-20-20-20-20-20-20-2	18	(1)		202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19			xylene		1									
	19		601-022-00-9	203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Part	20	**	exception of completerricyanides and respectified elsewher	lex cyanides such as mercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
Solition						H				<u> </u>				
22 a acenaphthylene 205-917-1 208-96-8	21		· .	202-049-5	91-20-3	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
23	22	0			J		<0.01	ma/ka		<0.01	ma/ka	<0.000001 %		<1.0D
24 Fluorene Fluo				205-917-1	208-96-8		40.01	mg/kg			mg/kg			
Flag	23	0	acenaphthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
24				201-469-6	83-32-9									
25	24	0	fluorene	201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
Column C			nhenanthrene	201-093-3	00-73-7									
26 anthracene 204-371-1 120-12-7 -0.01 mg/kg -0.01 mg/kg -0.000001 % -1.00	25	9	prichartifiche	201-581-5	85-01-8		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
Post-series	26	8	anthracene		po 0. 0		-0.01	ma/ka		-0.01	ma/ka	-0.000001.9/		4 OD
20	20			204-371-1	120-12-7		<0.01	ilig/kg		<0.01	mg/kg	<0.000001 %		<lud< td=""></lud<>
28	27	0	fluoranthene	bos 040 4	boo 44 0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
204-927-3 129-00-0 20.01 mg/kg 20.00001 % 20.00001 % 20.00001 % 20.00001 % 20.00001 % 20.00001 % 20.000001 % 20.00001 % 20.0000001 % 20.0000000000000000000000000000000000			n/rono	205-912-4	206-44-0									
Denzo[a]anthracene Color	28	0	pyrene	204-027-3	120-00-0		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
29			benzolalanthracen	J	123-00-0	H				<u> </u>				
Chrysene	29				56-55-3		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
Solution Solution	20		chrysene		1		-0.01	ma/ka		-0.01	ma/ka	-0.000001.9/		4LOD
Solidario Soli	30		601-048-00-0	205-923-4	218-01-9		20.01	ilig/kg		<u> </u>	mg/kg	<0.000001 /8		\LOD
S01-034-00-4 205-911-9 205-99-2 S01-034-00-4 205-911-9 205-99-2 S01-036-00-5 205-916-6 207-08-9 S01-036-00-5 205-916-6 207-08-9 S01-032-00-3 200-028-5 50-32-8 S01-032-00-3 200-028-5 50-32-8 S01-032-00-3 200-028-5 50-32-8 S01-032-00-3 200-028-5 S032-8 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3 S01-032-00-3	31						<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
32			1	*	205-99-2									
33 benzo[a]pyrene; benzo[def]chrysene	32				207-08-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
Solicition Sol	22					f	-0.04	m = //-		-0.04	m ~ /!	-0.000004.0/		4 00
34	33				50-32-8	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
205-893-2 193-39-5	3/1	0	indeno[123-cd]pyre	ene			-0.01	ma/ka		<0.01	ma/ka	<0.000001 %		∠I OD
35	34			205-893-2	193-39-5		20.01	ilig/kg		<u> </u>	mg/kg	<0.000001 /8		\LUD
601-041-00-2 200-181-8 53-70-3 601-041-00-2 200-181-8 53-70-3 601-041-00-2 200-181-8 53-70-3 601-041-00-2 205-883-8 191-24-2 601-041-00-2 205-883-8 191-24-2 601-041-00-2 203-632-7 108-95-2 601-041-00-2 203-632-7 108-95-2 601-041-00-2 203-632-7 108-95-2 601-041-00-2 203-632-7 108-95-2 601-041-00-2 203-632-7 108-95-2 601-041-00-2 203-632-7 108-95-2 601-041-041-04-2 601-0	35						<0.01	mg/ka		<0.01	mg/ka	<0.000001 %		<lod< td=""></lod<>
205-883-8 191-24-2					53-70-3						0 3			
27 phenol	36	0	benzo[ghi]perylene		101-24 2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
37			phenol	200-000-0	131-24-2	\vdash								
38 polychlorobiphenyls; PCB c02-039-00-4 215-648-1 1336-36-3 c0.001 mg/kg c0.0000001 % cLOD	37		<u>'</u>	203-632-7	108-95-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
602-039-00-4 215-648-1 1336-36-3	38		polychlorobiphenyl	s; PCB			<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
Total: 0.0346 %	L		602-039-00-4	215-648-1	1336-36-3			.59						
											Total:	0.0346 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

Classification of sample: TP04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

from contaminated sites)

Sample details

LoW Code: Sample name:

TP04 Chapter: Sample Depth: 0.50 m

Entry: Moisture content:

13%

(dry weight correction)

Hazard properties

None identified

Determinands

Moisture content: 13% Dry Weight Moisture Correction applied (MC)

#		Determinand	Note	User entered da	ata	Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index EC Number CAS Number number	CLP			1 actor		value	MC,	Osed
1	4	antimony { antimony trioxide }		<2 m	na/ka	1.197	<2.394 mg/	kg <0.000239 %		<lod< td=""></lod<>
		051-005-00-X 215-175-0 1309-64-4			3 3			3	Ļ	
2	æ 🎖	arsenic { arsenic trioxide }		7 m	ng/kg	1.32	8.179 mg/	g 0.000818 %	1	
		033-003-00-0 215-481-4 1327-53-3	\vdash						-	
3	4	boron { diboron trioxide }		2 m	ng/kg	3.22	5.699 mg/	g 0.00057 %	1	
-	_	005-008-00-8 215-125-8 1303-86-2							-	
4	4	cadmium { cadmium oxide }		0.58 m	ng/kg	1.142	0.586 mg/	g 0.0000586 %	1	
	_	048-002-00-0 215-146-2 1306-19-0	-						-	
5	≪\$	chromium in chromium(III) compounds { • chromium(III) oxide (worst case) }		15 m	ng/kg	1.462	19.401 mg/	g 0.00194 %	✓	
		215-160-9 1308-38-9								
6	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.5 m	ng/kg	2.27	<1.135 mg/	cg <0.000113 %		<lod< td=""></lod<>
		024-017-00-8								
7	4	copper { dicopper oxide; copper (I) oxide }		11 m	na/ka	1.126	10.96 mg/	a 0.0011 %	/	
		029-002-00-X 215-270-7 1317-39-1			3 3		3	3	ľ	
8	4	lead { lead chromate }	1	12 m	ng/kg	1.56	16.564 mg/	g 0.00106 %	1	
		082-004-00-2 231-846-0 7758-97-6							Ľ	
9	æ	mercury { mercury dichloride }		<0.05 m	ng/kg	1.353	<0.0677 mg/	kg <0.00000677 %		<lod< td=""></lod<>
	+	080-010-00-X 231-299-8 7487-94-7								
10	æ 🎉	molybdenum { molybdenum(VI) oxide }		0.9 m	ng/kg	1.5	1.195 mg/	g 0.000119 %	1	
	+	042-001-00-9 215-204-7 1313-27-5							<u> </u>	
11	4	nickel { nickel chromate }		16 m	ng/kg	2.976	42.142 mg/	g 0.00421 %	1	
-		028-035-00-7 238-766-5 14721-18-7							-	
12	4	selenium { nickel selenate }		1.1 m	ng/kg	2.554	2.486 mg/	g 0.000249 %	✓	
	+	028-031-00-5 239-125-2 15060-62-5	-						+	
13	4		-	50 m	ng/kg	2.774	122.75 mg/	g 0.0123 %	✓	
-							,		\vdash	
14	0	TPH (C6 to C40) petroleum group		<10 m	ng/kg		<10 mg/	kg <0.001 %		<lod< td=""></lod<>
15		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane	r	<0.001 m	ng/kg		<0.001 mg/	ca <0.0000001.9/		<lod< td=""></lod<>
13		603-181-00-X 216-653-1 1634-04-4	<0.001 m	mg/kg	<mark><g< mark=""></g<></mark>	<mark>g/kg</mark> <0.001	<0.001 Hig/	/kg <0.0000001 %		<lud< td=""></lud<>
		000 101 00-7								

Page 26 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

environmental management for business

er	IVII	ronmental manag	gement for busin	ess	_	1						_	
#			Determinand		CLP Note	User entered	d data	Conv.	Compound con	c.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
16		benzene				<0.001	mg/kg		<0.001 m	ıg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2						3,3			
17		toluene				<0.001	mg/kg		<0.001 m	ıg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
18	0	ethylbenzene				<0.001	mg/kg		<0.001 m	ıg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.001	mg/kg		<0.001 m	ıg/kg	<0.0000001 %		<lod< td=""></lod<>
20	4	exception of comp ferricyanides and a specified elsewher	of hydrogen cyanio lex cyanides such a mercuric oxycyanid re in this Annex }	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942 m	ıg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5 naphthalene											
21		601-052-00-2	202-049-5	91-20-3	-	<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthylene				<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
22	0	acenaphthene	205-917-1	208-96-8		-0.01			-0.01	~ /l.~	-0.000001.0/		1.00
23			201-469-6	83-32-9	-	<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
24	0	fluorene	201-695-5	86-73-7		<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
		phenanthrene		00.0.									
25		prioria in orio	201-581-5	85-01-8	_	<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
26	0	anthracene	204-371-1	120-12-7		<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
		fluoranthene	204-371-1	120-12-7									
27			205-912-4	206-44-0	_	<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
28	0	pyrene	bo 4 007 0	400.00.0		<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
		h f - 1 4h	204-927-3	129-00-0									
29		benzo[a]anthracer 601-033-00-9	200-280-6	56-55-3	_	<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
		chrysene	E00-200-0	pu-uu-u	+								
30		601-048-00-0	205-923-4	218-01-9	-	<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
_		benzo[b]fluoranthe		F	+					P.	0.0000		
31		601-034-00-4	205-911-9	205-99-2	\dashv	<0.01	mg/kg		<0.01 m	ig/kg	<0.000001 %		<lod< td=""></lod<>
20		benzo[k]fluoranthe				-0.01	mc/l-		-0.04	0///	*0.000004.0/		100
32		601-036-00-5	205-916-6	207-08-9		<0.01	mg/kg		<0.01 m	ig/kg	<0.000001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; b 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
34	0	indeno[123-cd]pyr	ene		╈	<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
			205-893-2	193-39-5	\perp								
35		dibenz[a,h]anthrac 601-041-00-2	200-181-8	53-70-3	_	<0.01	mg/kg		<0.01 m	ıg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	benzo[ghi]perylen	1		\top	-0.01	ma/k-		-0.01	o /l. ~	<0.000004.0/		-I OD
36			205-883-8	191-24-2		<0.01	mg/kg		<0.01 m	ig/kg	<0.000001 %		<lod< td=""></lod<>
37		phenol 604-001-00-2	203-632-7	108-95-2		<0.1	mg/kg		<0.1 m	ıg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	polychlorobipheny	ls; PCB		†	<0.001	mg/kg		<0.001 m	ıg/kg	<0.0000001 %		<lod< td=""></lod<>
_		602-039-00-4	215-648-1	1336-36-3	\bot								
										Total:	0.0239 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 28 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

Appendix A: Classifier defined and non EU CLP determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

EU CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H302\ ,\ Acute\ Tox.\ 1;\ H330\ ,\ Acute\ Tox.\ 1;\ H310\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ H315\ ,\ H315\ ,\ H315\ ,\ H315\$

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

 $\textbf{Data source:} \ \textbf{http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 $\,$

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings (edit as required)

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

molybdenum (molybdenum(VI) oxide)

Worst case CLP species based on hazard statements/molecular weight (edit as required)

Page 30 of 31 9PO0T-9R4XH-6DEF3 www.hazwasteonline.com

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides (salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: EU WM3 1st Edition v1.1.NI using the EU LoW

HazWasteOnline Classification Engine Version: 2022.103.5089.9622 (13 Apr 2022)

HazWasteOnline Database: 2022.103.5089.9622 (13 Apr 2022)

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EÚ) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021